

HAAS SERVICE AND OPERATOR MANUAL ARCHIVE

Mill Operators Manual 96-0123 RevAH Turkish March 2011

- This content is for illustrative purposes.
- Historic machine Service Manuals are posted here to provide information for Haas machine owners.
- Publications are intended for use only with machines built at the time of original publication.
- As machine designs change the content of these publications can become obsolete.
- You should not do mechanical or electrical machine repairs or service procedures unless you are qualified and knowledgeable about the processes.
- Only authorized personnel with the proper training and certification should do many repair procedures.

WARNING: Some mechanical and electrical service procedures can be extremely dangerous or life-threatening. Know your skill level and abilities.

All information herein is provided as a courtesy for Haas machine owners for reference and illustrative purposes only. Haas Automation cannot be held responsible for repairs you perform. Only those services and repairs that are provided by authorized Haas Factory Outlet distributors are guaranteed.

Only an authorized Haas Factory Outlet distributor should service or repair a Haas machine that is protected by the original factory warranty. Servicing by any other party automatically voids the factory warranty.

Freze - Kullanım kılavuzu 96-0123 rev AH Mart 2011

A

27 28

20

e

9

Haas Automation, Inc., 2800 Sturgis Road, Oxnard, CA 93030, USA | HaasCNC.com

HAAS AUTOMATION, INC. SINIRLI GARANTI SERTIFIKASI

Haas Automation, Inc. CNC Ekipmanını Kapsayan

1 Ocak, 2009 tarihinden itibaren geçerli

Haas Automation Inc. ("Haas" veya "Üretici") bu Sertifikada belirtildiği gibi Haas tarafından üretilen ve Haas veya yetkili distribütörleri tarafından satılan tüm yeni frezeler, torna tezgahları ve döner makineler (toplu olarak, "CNC Makineleri") ve parçaları (Garantinin Limitleri ve İstisnaları altında listelenenler hariç) ("Par-çalar") için sınırlı bir garanti sağlamaktadır. Bu Sertifikada belirtilen garanti sınırlı bir garantidir ve Üretici tarafından verilen tek garantidir ve bu Sertifikanın şart ve koşullarına tabidir.

Sınırlı Garanti Kapsamı

Her bir CNC Makinesi ve bunların Parçaları (toplu olarak, "Haas Ürünleri") malzeme ve işçilikteki kusurlara karşı Üretici tarafından garanti edilir. Bu garanti sadece CNC Makinesinin nihai alıcısı ve nihai kullanıcısı için ("Müşteri") sağlanır. Bu sınırlı garantinin süresi bir (1) yıldır, ancak Takımhane Frezeleri ve Mini-Frezeler için garanti süresi altı (6) aydır. Garanti süresi CNC makinesinin Müşterinin tesisine teslim edildiği tarihte başlar. Müşteri Haas veya yetkili bir Haas distribütöründen uzatılmış bir garanti süresi satın alabilir ("Garanti Süre Uzatımı").

Sadece Onarım veya Değiştirme

Bu garanti altında, tüm ve herhangi bir haas ürünü ile ilgili olarak üreticinin kendi sorumluluğu ve müşterinin özel başvuru yolu üreticinin karar yetkisine bağlı olarak arızalı haas ürününün onarılması veya değiştirilmesi ile sınırlı olmalıdır.

Garantinin Reddi

Bu garanti üreticinin kendi ve özel garantisidir ve herhangi bir zımni pazarlanabilirlik garantisi, belirli bir amaç için zımni uygunluk garantisi veya diğer kalite veya performans veya ihlal etmeme garantisi dahil olmak ancak bunlarla sınırlı olmamak kaydıyla, yazılı veya sözlü, sarih veya zımni, her türlü ve çeşitteki tüm diğer garantilerin yerine geçer. Her türlü diğer garantiler burada üretici tarafından reddedilir ve müşteri feragat eder.

Garantinin Sınırlamaları ve Kapsam Dışı Olanlar

Normal kullanım ve zaman içerisinde, boya, pencere cilası ve durumu, ampüller, keçeler, talaş temizleme sistemi vb., dahil olarak ve bunlarla sınırlı tutulmadan, aşınmaya tabi olan aksamlar bu garanti kapsamı dışındadır. Üretici tarafından belirlenen bakım prosedürleri bu garantiye bağlı olmalıdır ve bu garantiyi korumak için kaydedilmelidir. Üretici herhangi bir Haas Ürününün kötü kullanıma, hatalı kullanıma, aşırı kullanıma, ihmale, kazaya, hatalı montaja, hatalı bakıma, hatalı depolamaya veya hatalı çalıştırma veya uygulama maruz kaldığını (i), (ii) herhangi bir Haas Ürününün Müşteri, yetkili bir servis teknisyeni veya diğer yetkisiz kişi tarafından hatalı şekilde onarıldığını veya servis yapıldığını, (iii) Müşteri veya herhangi bir kişi Üreticinin önceden yazılı yetkisini almadan herhangi bir Haas Ürünü üzerinde herhangi bir değişiklik yaptığını veya yapmaya çalıştığını, ve/veya (iv) herhangi bir Haas Ürününün herhangi bir ticari olmayan amaçla kullanılmış olduğunu (kişisel veya evde kullanmak gibi) tespit ederse bu garanti geçersiz olur. Bu garanti hırsızlık, yağma, yangın, hava şartları (yağmur, sel, fırtına, şimşek veya deprem gibi) veya savaş ve terörizm olayları dahil ancak bunlarla sınırlı olmamak üzere, Üreticinin makul kontrolü üzerindeki harici etki veya sorunlar nedeniyle meydana gelen hasar veya arızaları kapsamaz.

Bu Sertifikada anlatılan kapsam dışı olanların veya sınırlamaların genellemesini sınırlamadan, bu garanti, herhangi bir Haas Ürününün herhangi bir alıcının üretim özelliklerine veya diğer gereksinimlerine uyacağına dair veya herhangi bir Haas Ürününün çalışmasının kesintisiz veya hatasız olacağına dair herhangi bir garantiyi içermez. Üretici, herhangi bir Haas Ürününün herhangi bir kişi tarafından kullanımı ile ilgili hiçbir sorumluluğu kabul etmez, ve Üretici herhangi bir kişiye karşı tasarımdaki, üretimdeki, çalıştırmadaki, performanstaki herhangi bir hataya karşı onarım veya değiştirme dışında herhangi bir Haas Ürünü için bu garantide yukarıda açıklananlarla aynı olarak herhangi bir sorumluluk taşımaz.

Sorumluluğun Ve Hasarların Sınırlandırılması

Üretici, müşteri veya herhangi diğer bir kişiye karşı sözleşmedeki bir eyleme, tazminat yükümlülüğüne veya diğer yasal veya adli kurallara dayanır olsa da, haas ürününün arızalanmasından kaynaklanabilecek kar kaybı, veri kaybı, ürün kaybı, gelir kaybı, kullanım kaybı, arızalı kalma maliyeti, iş iyi niyeti, ekipman, mülk hasarı, veya herhangi bir kişinin malındaki hasar ve her tür hasarı içeren ancak bunlarla sınırlı kalmayan hasar veya talepler, bu tür hasarların meydana gelebileceği üretici veya herhangi bir yetkili temsilci tarafından söylenmiş olsa bile, herhangi bir haas ürününden veya haas ürünü ile ilgili ortaya çıkan, üretici veya yetkili bir distribütör, servis teknisyeni veya diğer yetkili bir üretici temsilcisi (toplu olarak, "yetkili temsilci") tarafından sağlanan diğer ürünler veya servisler veya herhangi bir haas ürününün kullanımından doğan parça veya ürün arızalarına karşı herhangi bir tazmin edici, arızi, dolaylı, cezai, özel veya diğer hasar veya taleplere karşı sorumlu olmayacaktır. Bu tür tüm hasar ve talepler üretici tarafından reddedilir ve müşteri feragat eder. Bu garantide belirtildiği gibi, herhangi türden bir neden için üreticinin kendi sorumluluğu ve müşterinin özel başvuru yolu üreticinin karar yetkisine bağlı olarak arızalı haas ürününün onarılması veya değiştirilmesi ile sınırlı olmalıdır.

Müşteri, Üretici veya onun Yetkili Temsilcileriyle iş anlaşmasının bir parçası olarak, hasarların karşılanması hakkı üzerindeki sınırlama dahil ancak bununla sınırlı olmayacak şekilde, bu Sertifikada belirtilen sınırlamaları ve kısıtlamaları kabul eder. Müşteri, Üreticinin bu garanti kapsamının ötesindeki hasar ve taleplere karşı sorumlu olması istenmesi durumunda Haas Ürünlerinin fiyatının daha yüksek olacağını anlar ve kabul eder.

Tüm Sözleşme

Bu Sertifika sözlü veya yazılı, bu Sertifikanın konusu ile ilgili olarak taraflar veya Üretici arasındaki herhangi ve tüm diğer sözleşme, taahhütler, temsiller veya garantilerin yerine geçer, ve bu konu ile ilgili taraflar veya Üretici arasındaki tüm şartları ve sözleşmeleri içerir. Üretici işbu belge ile bu Sertifikanın herhangi bir şart ve koşulu ile tutarsız olan veya ek olan, sözlü veya yazılı, tüm diğer sözleşmeleri, taahhütleri, temsilleri veya garantileri açık bir şekilde reddeder. Bu sertifikada belirtilen hiçbir şart ve koşul hem Üretici hem de Müşteri tarafından imzalanmış yazılı bir anlaşma olmadıkça değiştirilemez veya tadil edilemez. Bununla birlikte yukarıda belirtildiği gibi, Üretici sadece geçerli garanti süresini uzatabileceği kadarıyla bir Garanti Uzatması sağlayacaktır.

Aktarılabilirlik

Bu garanti, orijinal Müşteriden başka bir tarafa CNC Makinesi garanti periyodunun bitiminden önce özel satış vasıtasıyla satıldıysa, Üreticiye bununla ilgili yazılı bildirimde bulunulmuş olması ve bu garantinin aktarım sırasında geçersiz olmaması kaydıyla transfer edilebilir. Bu garantinin aktarımı bu Sertifikanın tüm şart ve koşullarına tabi olacaktır.

Bu garanti kanuni ihtilaflardaki kurallar uygulanmadan Kaliforniya Eyaletinin kanunlarına tabi olmalıdır. Bu garantiden doğan herhangi ve tüm anlaşmazlıklar Ventura Yerel Yönetimi, Los Angeles Yerel Yönetimi veya Orange Yerel Yönetimi, Kaliforniya'daki yetkili mahkemelerce çözülmelidir. Herhangi bir yetki alanındaki herhangi bir durumda geçersiz veya dava edilemez olan bu Sertifikanın herhangi bir şartı veya hükmü buradaki diğer şart ve hükümlerin geçerliliğini ve dava edilebilirliğini veya diğer bir yetki alanındaki veya diğer bir durumdaki aykırı şart ve hükmün geçerliliğini ve dava edilebilirliğini etkilememelidir.

Garanti Tescil

Makineniz ile ilgili bir probleminiz olduğunda, lütfen ilk önce kullanım kılavuzunuza başvurun. Eğer bu problemi çözmezse, yetkili Haas distribütörünüzü arayın. Son çözüm olarak, Haas'ı aşağıda verilen numaradan direkt olarak arayın.

Haas Automation, Inc. 2800 Sturgis Road Oxnard, California 93030-8933 USA Telefon: (805) 278-1800 FAKS: (805) 278-8561

Makinenin son kullanıcısını güncelleştirmeler ve ürün güvenlik bildirimleri için kaydetmek için, hemen makine tescil numarasına sahip olmalıyız. Lütfen tamamen doldurarak aşağıdaki adrese ATTENTION (VF-1, GR-510, VF-6, vb. — hangisi mevcutsa) REGISTRATIONS (TESCİLLER DİKKATİNE) postalayın. Garantinizi onaylamak için ve satın almış olabileceğiniz diğer bir ilave opsiyonu da kapsamak için Lütfen faturanızın bir kopyasını ekleyin.

Şirket Adı:	Temas Kurulacak Kişinin Adı:				
Adres:					
Satıcı:	Kurulum Tarihi:	/		_/	
Model No. :	Seri Numarası:				
Telefon: ()	FAKS: ()				

Ekipman 800 saatlik kullanım sonrası ekipmanın çalışmayı otomatik olarak durdurmasına neden olan ön ayarlı otomatik kapamayı içerir. Bu özellik alıcıyı hırsızlığa karşı korur. Makinenin yetkisiz kullanımı, izin verilen süre dolduğunda makine programları çalıştırmayı durduracağından minimumda tutulmaktadır. Çalışmaya erişim kodu kullanılarak devam edilebilir; kodlar için satıcınıza başvurun.

Müşteri Memnuniyeti Prosedürü

Sayın Haas müşterisi,

Hem Haas Automation, Inc., hem de ekipmanınızı satın aldığınız Haas distribütörü için sizin tüm memnuniyetiniz ve iyiliğiniz çok büyük önem taşır. Normal olarak, satış işlemi veya ekipmanınızın çalışması hakkında sahip olabileceğiniz herhangi bir sıkıntınız distribütörünüz tarafından hızlı bir şekilde çözülecektir.

Buna rağmen, sıkıntılarınız sizin memnuniyetinizi sağlayacak şekilde çözülmezse, ve şikayetlerinizi yetkili satıcınızın yönetim üyelerinden biri ile, doğrudan Genel Müdür veya yetkili satıcınızın sahibi ile görüştüyseniz, lütfen aşağıdakileri yapın: 800-331-6746'yı arayarak Haas Automation Müşteri Servisi Merkezi ile temas kurun ve Müşteri Servisi Departmanını sorun. Bu şekilde şikayetlerinizi mümkün olan en kısa sürede çözebiliriz, lütfen aradığınızda aşağıdaki bilgileri yanınızda bulundurun:

- Adınız, şirket adı, adres ve telefon numarası
- Makine model ve seri numarası
- Yetkili satıcı adı, ve yetkili satıcıda temas kurduğunuz en son kişinin adı
- Şikayetinizin nedeni

Eğer Haas Automation'a yazmak isterseniz, lütfen şu adresi kullanın:

Haas Automation, Inc. 2800 Sturgis Road Oxnard, CA 93030 Att: Customer Satisfaction Manager e-mail: Service@HaasCNC.com

Haas Automation Müşteri Servisi Merkezi ile temas kurduğunuzda, sizinle doğrudan çalışmak için ve distribütürünüzün şikayetlerinizi derhal çözmesi için her türlü çabayı sarfedeceğiz. Haas Automation olarak iyi bir Müşteri-Distribütör-Üretici ilişkisinin her açıdan sürekli başarı sağlayacağını biliyoruz.

Müşteri Geribildirimi

Haas Kullanım Kılavuzu ile ilgili herhangi bir şikayetiniz veya sorunuz olursa, lütfen e-posta, pubs@haascnc.com vasıtasıyla bizimle temas kurun. Sizden gelecek her türlü tavsiyeyi memnuniyetle bekliyoruz.

neler için NFPA 79 Elektrik Standartına ve Kanada eşdeğeri, CAN/CSA C22.2 No. 73'e uygun olduğunu belgeleyen ETL Tescil işaretini taşırlar. ETL Tescil ve cETL Tescil işaretleri, Sigortacıların Laboratuarlarına alternatif olarak, Intertek Test Hizmetleri (ITS) tarafından yapılan testten başarılı bir şekilde geçen ürünlere verilir. TUV Yönetim Hizmetinden (ISO sicil yetkilisi olarak) alınan ISO 9001:2000 sertifikası Haas Automation şirketinin kalite yönetim sisteminin tarafsız bir takdiridir. Bu başarı Haas Automation şirketinin Uluslararası Standardizasyon Kurumu tarafından belirlenen standartlara uygun olduğunu onaylar ve Haas şirketinin taahhütünün global pazardaki müşterilerin ihtiyaç ve gereksinimlerini karşıladığını doğrular. Bu kılavuzda kapsanan Bilgiler sürekli olarak güncelleştirilir. En son güncellemeler ve diğer faydalı bilgiler .pdf formatında ücretsiz yükleme ile çevrimiçi elde edilebilir (<u>www.HaasCNC.</u> <u>com</u> web sitesine gidin ve navigasyon çubuğundaki "Customer Services (Müşteri Hizmetleri)" açılır menüsünün altındaki "Manual Updates (Kılavuz Güncelleştirmeleri)" üzerine tıklayın).

Uygunluk Beyanı

ÜRÜN:

ÜRETICI:

CNC Frezeleri

*Fabrikada yüklenen veya onaylı bir Fabrika Satış Mağazası (HFO) tarafından sahada yüklenen tüm seçenekler dahil Haas Automation, Inc. 2800 Sturgis Road, Oxnard, CA 93030 805-278-1800

Biz, kendi sorumluluğumuzda, bu beyanın ilgili olduğu yukarıda listelenen ürünlerin İşleme Merkezleri CE direktifinde özetlenen mevzuata uygun olduğunu beyan ederiz:

•Makine Direktifi 2006/42/EC

•Elektromanyetik Uyumluluk Direktifi 2004 / 108 / EC

•Düşük Gerilim Direktifi 2006/95/EC

•İlave Standartlar:

•EN 60204-1:2006/A1:2009

•EN 614-1:2006+A1:2009

•EN 894-1:1997+A1:2008

•EN 954-1 Makine güvenliği - Güvenlik - kumanda sistemlerinin ilgili parçaları bölüm 1: Tasarım için genel prensipler: (1997)

•EN 14121-1:2007

RoHS: Üretici dokümantasyonuna göre Muafiyetle UYUMLU. Şunlarla muaf:

a) Büyük ölçekli sabit endüstriyel araç

b) Denetleme ve kontrol sistemleri

c) Çelikte alaşım elementi olarak kurşun

GÜVENLIK

HAAS Emniyet Yöntemleri Emniyeti Aklinizdan Çıkarmayınız!

Çalışırken Dalgin Olmayınız

Bütün frezeleme makineleri döner parçalardan, kayışlardan ve kasnaklardan, yüksek gerilimden, parazitten ve basınçlı havadan dolayı risk içerirler. CNC makineleri ve aksamlarını kullanırken, kişisel yaralanmalar ve mekanik hasar riskini azaltmak için temel güvenlik önlemlerine daima uyulmalıdır. Önemli — Bu makine, güvenli makine kullanımı için Operatör kullanım

kılavuzuna, güvenlik etiketlerine, güvenlik prosedürlerine ve talimatlarına uygun olarak yalnızca eğitimli personel tarafından çalıştırılmalıdır.

Emniyet Hususları

Makine Güvenlike Notları / En İvi Uvqulamalar	2
Kurulum Modu	4
Makinenin Uygun Bir Şekilde Çalıştırılması için Kullanım Yöntemleri	5
Etiket Örnekleri	8
Uyarı, Dikkat ve Notlarla ilgili Açıklamalar	12
FCC Uygunluğu	13

Genel Ürün Kullanım Teknik Özellikleri ve Sınırları

Çevresel (sadece kapalı mekanlarda kullanılır)*				
	Asgari	Azami		
Çalışma Sıcaklığı	5°C (41°F)	50°C (122°F)		
Saklama Sıcaklığı	-20°C (-4°F)	70°C (158°F)		
Ortam Nemi	%20 bağıl nem, yoğunlaşmasız	%90 bağıl nem, yoğunlaşmasız		
Rakım	Deniz Seviyesi	6000 ft. (1829 m)		
Gürültü				
	Asgari	Azami**		
Kullanım sırasında tipik bir operatör konu- munda makinenin tüm alanlarından yayılır	70 dB değerinden daha büyük	85 dB değerinden daha büyük		

* Makineyi patlayıcı atmosferlerde çalıştırmayın (patlayıcı buharlar ve / veya partikül madde)

** Makine/işleme sesinin neden olabileceği duyma kaybını önlemek için önlemler alın. Sesi azaltmak için kulak koruyucuları kullanın, kesim uygulamasını değiştirin (takım, iş mili hızı, eksen hızı, fikstür, programlanmış yol) ve / veya kesim sırasında makine alanına erişimi engelleyin.

BU MAKINEYI ÇALIŞTIRMADAN ÖNCE AŞAĞIDAKILERI OKUYUNUZ:

- Bu makineyi yalnızca yetkili personel kullanmalıdır. Eğitimsiz personel kendilerine ve makineye zarar verme riski taşırlar ve uygun şekilde çalıştırmama garantiyi geçersiz kılacaktır.
- Makineyi çalıştırmadan önce hasarlı parçalar ve aletler olup olmadığını kontrol ediniz. Hasarlı herhangi bir parça veya takım yetkili personel tarafından uygun şekilde onarılmalı veya değiştirilmelidir. Eğer aksamlardan herhangi birisi doğru çalışmıyorsa makineyi çalıştırmayınız. Atölye amirinizle temasa geçiniz.
- Makineyi çalıştırırken uygun göz ve kulak koruyucuları kullanınız. Görme riskleri ve işitme kaybını azaltmak için, ANSI-onaylı çarpma emniyet gözlükleri ve OSHA-onaylı kulak koruması önerilmektedir.
- Kapaklar kapalı ve kapak kilitleri düzgün olarak çalışmadığı sürece makineyi çalıştırmayınız. Döner kesme aletleri ciddi yaralanmalara neden olabilir. Bir program çalışıyorken, freze tablası ve iş mili kafası herhangi bir anda herhangi bir yönde hızlı bir şekilde hareket edebilir.
- Acil Durdurma düğmesi Kontrol Paneli üzerinde bulunan büyük, yuvarlak kırmızı düğmedir. Acil Durdurma düğmesine basılması makinenin tüm hareketini, servo motorları, takım değiştiriciyi ve soğutma sıvısı pompasını anında durduracaktır. Makineyi öldürmemek için, Acil Durdurma düğmesini sadece acil durumlarda kullanınız.
- Montaj veya servis süresi dışında elektrik panelinin kilitli ve kumanda kabini üzerindeki tuş ve mandalların sürekli olarak kilitli tutulması gerekir. Bu işlemler sırasında, panele yalnızca kalifiye elektrikçiler erişebilmelidir. Ana devre kesici açık olduğunda, elektrik panelinin her yerinde yüksek voltaj vardır (devre kartları ve mantık devreleri dahil) ve bazı aksamlar yüksek sıcaklıkta çalışır. Bu nedenle, azami dikkat sarf edilmelidir. Makinenin montajının ardından, kumanda kabini kilitli olmalı ve anahtar yalnızca kalifiye servis personeline verilmelidir.
- Bu donanımı hiçbir şekilde modifiye ETMEYİNİZ veya üzerinde değişiklik YAPMAYINIZ. Eğer modifikasyonlar yapılması gerekiyorsa, bu gibi tüm talepler Haas Automation, Inc. tarafından karşılanmalıdır. Haas Frezeleme veya Torna Tezgahının herhangi bir modifikasyonu veya değişikliği, kişisel yaralanmalara ve/veya mekanik hasara yol açabilir ve garantinizi geçersiz kılar.
- Makineyi çalıştırmadan önce yerel güvenlik yasalarınıza ve yönetmeliklerinize başvurun. Güvenlik konularında ne zaman danışmanız gerekirse satıcınızla temas kurunuz.
- Makinenin kurulması ve işletilmesinde rol alan herkesin, fiili bir çalışmayı yapmadan ÖNCE, makine ile birlikte sunulan montaj, çalıştırma ve emniyet talimatları hakkında ayrıntılı bilgi sahibi olduğundan emin olmak atölye sahibinin sorumluluğundadır. Emniyet hususunda en önemli sorumluluk atölye sahibinde ve makine ile çalışma yapan kişilerdedir.
- Makine otomatik kumandalıdır ve her an çalışmaya başlayabilir.
 - Bu makine bedensel ciddi yaralanmalara neden olabilir.
 - Kapılar açıkken çalıştırmayınız.
 - Makine muhafazasının içine girmekten kaçınınız.
 - Uygun eğitim almadan çalıştırmayınız.
 - Daima emniyet gözlükleri kullanınız.

 İş milindeki takım üzerine asla elinizi koymayınız ve ATC FWD, ATC REV, NEXT TOOL butonlarına basmayınız veya takım değişikliği çevrimine neden olmayınız. Takım değiştirici içeri hareket edecek ve elinizi ezecektir.

 Takım değiştirici hasarını önlemek için, takımları yüklerken takımların iş mili tahriği kulbu ile doğru bir şekilde hizalandığından emin olunuz. • Elektrik güç beslemesi, bu kullanım kılavuzundaki teknik özellikleri karşılamalıdır. Makinenin diğer bir kaynaktan çalıştırılması girişimi ciddi hasarlara ve garantinin geçersiz hale gelmesine neden olabilir.

 Kurulum tamamlanana kadar kumanda panosunun üzerindeki POWER UP/RESTART'a (Güç Besleme/ Yeniden Çalıştırma) basmayın.

• Tüm montaj talimatları tamamlanmadan önce makineyi çalıştırmayı denemeyiniz.

Asla güç beslemesi varken makineye bakım yapmayınız.

Yüksek devir hızında/beslemede islenen hatalı sıkılan parçalar çıkarılmış olabilir ve emniyet kapağını delebilir. Aşırı büyük ve marjinal değerde sıkılmış parçaların talaşlı işlemi emniyetli değildir.

• Hasarlı veya ciddi ölçüde çizilmiş pencereler değiştirilmelidir - Hasarlı pencereleri derhal değiştiriniz.

 Zehirli veya yanıcı materyali işlemeyiniz. Zehirli gazlar çıkabilir. İşlemeden önce, materyal yan ürünlerinin emniyetli bir şekilde atılması için o materyalin üreticisine danışınız.

• İş mili kafası ansızın düşebilir. Personel iş mili kafasının hemen altındaki alandan kaçınmalıdır.

 Arıza nedeni araştırılana kadar devre kesiciyi sıfırlamayın. Sadece Haas-eğitimli servis personeli ekipmandaki sorunu gidermeli ve onarmalıdır.

Makinede çalışmalar gerçekleştirirken aşağıdaki ana esasları takip edin:

Normal çalışma - Makine çalışırken kapıyı kapalı ve korumaları yerinde tutun.

Parça yükleme ve boşaltma – Bir operatör çevrim başlatma düğmesine basmadan önce (otomatik hareket başlatmak) kapıyı veya korumayı açar, görevi tamamlar, kapıyı veya korumayı kapatır.

Takım yükleme veya boşaltma – Bir makinist takımları yüklemek veya boşaltmak için işleme alanına girer. Otomatik hareket komut edilmeden önce alanı tamamen terkedin (örneğin, sonraki takım, ATC/Taret İLERİ (FWD)/GERİ (REV)).

İşleme işi kurulumu – Makine fikstürünü eklemeden veya çıkarmadan önce acil durdurma düğmesine basın.

Bakım / Makine Temizleyicisi– Muhafazaya girmeden önce acil durdurma düğmesine basın veya makinenin gücünü kesin.

Makine hareket halindeyken asla işleme alanına girmeyin; ciddi yaralanmaya veya ölüme neden olabilir.

Gözetimsiz Çalışma

Tam muhafazalı Haas CNC makineleri gözetimsiz olarak çalışmak üzere tasarlanmıştır, ancak çalışma süreciniz denetimsiz çalışmak için emniyetli olmayabilir.

Makinelerin emniyetli kurulumunun ve en iyi uygulamaların kullanımının işyeri sahibinin sorumluluğunda olması gibi, bu yöntemlerin gelişiminin idaresi sorumluluğu da ona aittir. İşleme süreci herhangi bir tehlikeli durumun meydana gelmesi halinde hasarı önlemek amacıyla izlenmelidir.

Örneğin, işlenen malzemeye bağlı bir yangın riski varsa, personele, ekipmana ve binaya yönelik zarar riskini azaltmak için uygun bir yangın söndürme sistemi kurulmalıdır. Makinelerin gözetimsiz çalışmasına izin vermeden önce izleme aletlerinin kurulumu için uygun bir uzmanla temas kurulmalıdır.

Bir sorun tespit edildiği zaman herhangi bir kazayı önlemek amacıyla insan müdahalesine gerek duymadan derhal uygun bir eylem gerçekleştirebilecek bir izleme ekipmanı seçmek özellikle önemlidir.

KURULUM MODU

Tüm Haas frezeleri Kurulum Modunu kilitlemek ve kilidini açmak için operatör kapılarında kilitlere ve asılı kumanda butonunun yan tarafında bir şaltere sahiptir. Genellikle, Kurulum Modu kilitleme/kilit açma durumu makinenin kapıları açıldığındaki çalışmasını etkiler.

Bu özellik kontroldaki şu ayarlar ve parametrelerin yerine geçer:

- Ayar 51, Kapı Tutma Atlaması
- Parametre 57 bit 7, Güvenlik Devresi
- Parametre 57 bit 31, Kapı Tahdidi Sp
- Parametre 586, Maks Kapı Açma Sp RPM.

Kurulum modu birçok defa kilitlenmelidir (dikey, kilitli pozisyondaki şalter). Kilitli modda, muhafaza kapıları bir CNC programının, iş mili döndürmesinin veya eksen hareketinin yürütülmesi sırasında kilitli kapalıdır. Makine çevrim içinde değilse kapıların kilidi otomatik olarak açılır. Kapı açık olduğunda birçok makine fonksiyonu kullanılamaz.

Kilit açık olduğunda, kurulum modu yetenekli bir makiniste işlerin kurulumunu yapması için daha fazla erişim sağlar. Bu modda, makine davranışı kapıların açık veya kapalı olmasına bağlıdır. Kurulum modunda kapılar kapalı iken, kapının açılması hareketi durduracak ve iş mili hızını azaltacaktır. Genellikle düşük hızda, kapılar açıkken kurulum modunda makine birkaç fonksiyona izin verecektir. Aşağıdaki şemalar modları ve izin verilen fonksiyonları özetlemektedir.

GÜVENLİK ÖZELLİKLERİ ATLAMAYI DENEMEYİN. BUNUN YAPILMASI MAKİNENİN GÜVENSİZ OL-MASINA NEDEN OLACAK VE GARANTİYİ GEÇERSİZ KILACAKTIR.

Robot Hücreler

Bir robot hücresindeki bir makinenin Kilitli/Çalıştırma modunda iken kapı açık durumda sınırlandırılmadan çalışmasına izin verilir.

Bu açık-kapı durumuna sadece bir robotun CNC makinesi ile iletişim kurması durumunda izin verilir. Tipik olarak robot ve CNC makinesi arasındaki arayüzey her iki makinenin güvenliğini belirtir.

Bir robot-hücre entegratörü CNC makinesinin açık-kapı durumlarının test edebilir ve robot hücrenin güvenliğini sağlayabilir

Kapı Açıkken Makine Davranışı		
MAKINE FONKSIYONU		KİLİT AÇMADA
Maksimum Hızlı	İzin verilmez.	25%
Cycle Start (Çevrim Başlatma)	İzin verilmez, makine hareketi veya program çalıştırma yok.	Çevrim Başlatma düğmesi basılı iken, makine hareketi komut edilen iş mili devrinin frezelerde 750 RPM'i, tornalarda 50 RPM'i aşmaması kaydıyla başlatılır.
İş Mili CW-CCW	Evet, ancak kullanıcı CW/CCW (Saat Yönünde/Tersi Yönde) düğmesine basmalı ve basılı tutmalıdır ve frezelerde maksimum 750 RPM, tornalarda 50 RPM.	Evet, ancak frezelerde maksimum 750 RPM, tornalarda 50 RPM.
Takım Değiştirme	İzin verilmez.	İzin verilmez.
Sonraki Takım özelliği	İzin verilmez.	Sonraki Takım düğmesine basıldığında ve basılı tutulduğunda izin verilir.
Program çalışırken kapıları açar.	İzin verilmez. Kapı kilitlidir.	Evet, ancak eksen hareketi dura- cak ve iş mili maksimum frezelerde 750 RPM'ye, tornalarda 50 RPM'ye yavaşlayacaktır.
Konveyör hareketi	İzin verilmez.	Evet, ancak kullanıcı konveyör düğmesine basmalı ve basılı tutmalıdır.

100%	Basın ve Basılı Tutun
100%	Basın ve Basılı Tutun

G00 G01 Z X Y		
A	100%	0%
N	25%	25%

	100%	X
A	100%	X

- -

Makinenin Uygun Bir Şekilde Çalıştırılması için Kullanım Yöntemleri

Bütün frezeleme makineleri döner kesme takımlarından, kayışlardan ve kasnaklardan, yüksek gerilimden, parazitten ve basınçlı havadan dolayı risk içerirler. Frezeleme makineleri ve aksamlarını kullanırken, kişisel yaralanmalar ve mekanik hasar riskini azaltmak için temel emniyet önlemlerine daima riayet edilmelidir. BU MAKİNEYİ ÇALIŞTIRMADAN ÖNCE İLGİLİ BÜTÜN UYARILARI, DİKKAT NOTLARINI VE TALİMATLARI OKUYUNUZ.

Makine Üzerinde Yapılacak Modifikasyonlar

Bu donanımı hiçbir şekilde **modifiye ETMEYİNİZ veya üzerinde değişiklik YAPMAYINIZ**. Eğer modifikasyonlar yapılması gerekiyorsa, bu gibi tüm talepler Haas Automation, Inc. tarafından karşılanmalıdır. Haas işleme merkezinin herhangi bir modifikasyonu veya değişikliği, kişisel yaralanmalara ve/veya mekanik hasara yol açabilir ve garantinizi geçersiz kılar.

Güvenlik Etiketleri

CNC takım tehlikelerinin hızlı bir şekilde iletildiğinden ve anlaşıldığından emin olmak için tehlikelerin olduğu yerlerde Haas Makinelerinin üzerine tehlike sembolleri yerleştirilir. Etiketler hasar gördüğünde veya aşındığında veya özel bir güvenlik noktasını vurgulamak için ilave etiketler gerektiğinde, satıcınıca veya Haas fabrikasına başvurun. **Herhangi bir emniyet etiketini veya sembolünü değiştirmeyin veya çıkarmayın.**

Her bir tehlike makinenin ön tarafına yerleştirilmiş olan genel emniyet etiketi üzerinde tanımlanmış ve açıklanmıştır. Tehlikelerin özel konumları uyarı sembolleri ile işaretlenmiştir. Aşağıda açıklanan her bir emniyet uyarısının dört bölümünü de inceleyerek anlayınız ve takip eden sayfalardaki sembolleri tanıyınız.

96-0123 rev AH 03-2011

Freze Uyarı Etiketleri

Torna Uyari Etiketleri

Diğer Güvenlik Etiketleri

Modele ve yüklenmiş seçeneklere göre, diğer etiketleri makinenizin üzerinde bulabilirsiniz:

Daha fazla açıklama için APC Bölümüne bakın.

Uyarı, Dikkat ve Notlarla ilgili Açıklamalar

Bu kullanım kılavuzu içerisinde, önemli ve kritik bilgiler "Uyarı", "Dikkat" ve "Not" kelimeleri ile bildirilmektedir.

Uyarılar operatör ve/veya makine için yüksek risk arz ediyorsa kullanılır. Verilen uyarıyı dikkate alarak, gerekli bütün işlem adımlarına uyunuz. Uyarı talimatlarını yerine getiremiyorsanız devam etmeyiniz. Örnek bir uyarı aşağıda verilmiştir:

UYARI! Ellerinizi asla takım değiştiricisi ile iş mili kafasının arasına sokmayınız.

Dikkat küçük kişisel yaralanmalarla veya mekanik hasarla ilgili potansiyel tehlike olduğunda kullanılır:

DİKKAT! Herhangi bir bakım işlemi gerçekleştirmeden önce makineyi kapatınız.

Notlar belirli bir işlem adımı veya yöntemi hakkında operatöre ilave bilgiler verir. Bu bilgiler, işlem adımını veya yöntemi icra ederken karışıklık olmamasını sağlamak amacıyla operatör tarafından dikkate alınmalıdır, örneğin:

NOT: Eğer makine opsiyonel olarak uzatılmış Z-açıklık tablosu ile donatılmışsa, aşağıdaki hususlara riayet ediniz:

FCC Uygunluğu

Bu ekipman test edilmiş ve FCC Kurallarının 15. Bölümü uyarınca A Sınıfı dijital cihaz limitlerine uygun bulunmuştur. Bu limitler ekipman ticari bir ortamda çalıştırıldığında zararlı parazitlere karşı geçerli bir koruma sağlamak için tasarlanmıştır. Bu ekipman radyo frekansı enerjisi üretir, kullanır ve yayabilir ve talimatlar kılavuzuna göre kurulmadığı ve kullanılmadığında radyo iletişimine zararlı parazite neden olabilir. Bu ekipmanın konut alanında çalıştırılması, paraziti düzeltmek için gerekli maliyetin kullanıcı tarafından karşılanmasını gerektirecek zararlı parazite neden olabilir.

Aşağıda bir HAAS frezesinin görsel girişidir. Gösterilen bazı özellikler sırası gelince ayrıntılı olarak açıklanacaktır.

Hava/Yağlama Paneli Kapağı Sökülü

Yatay Frezeler

Kontrol Ekrani ve Modlari

Kontrol ekranı kontrol moduna ve kullanılan ekran tuşlarına bağlı olarak değişen bölmeler halinde düzenlenmiştir. Aşağıdaki şekil temel ekran yerleşim planlarını göstermektedir:

Temel Kontrol Ekranı Planı

Verilerle etkileşim yalnızca halen etkin olan bölmeler içerisinde gerçekleştirilebilir. Herhangi bir belirli anda yalnızca bir bölme etkindir ve beyaz bir arka planla belirtilir. Örneğin, Takım Ofset tablosuyla çalışmak için önce beyaz bir arka plan görüntülenene kadar Ofset tuşuna basarak tabloyu etkinleştirin. Daha sonra veride değişiklikler yapın. Bir kontrol modu içerisinde etkin bölmeyi değiştirmek tipik olarak ekran tuşlarıyla yapılır.

Kontrol fonksiyonları üç modda düzenlenmişlerdir: **Kurulum**, **Düzenleme**, ve **Çalışma**. Her mod kendisi kapsamında olan görevleri gerçekleştirmek için bir ekrana sığacak şekilde düzenlenmiş olan gerekli bilgileri sağlar. Örneğin Kurulum modu iş ve takım ofset tablolarının ve konum bilgilerinin her ikisini de görüntüler. Düzenleme modu iki tane program düzenleme bölmesi ve VQCP ve IPS/WIPS sistemlerine (varsa) erişim sağlar.

Mod tuşlarını kullanarak erişilen modlar aşağıdaki gibidir:

Kurulum: ZERO RET, HAND JOG (Elle Kumanda) tuşları. Makine kurulumu için tüm kontrol özelliklerini sağlar.

Edit (Düzenleme): EDIT (DÜZENLEME), MDI/DNC, LIST PROG (Programları Listele) tuşları. Tüm program düzenleme, idare ve transer fonksiyonlarını sağlar.

Çalışma: MEM tuşları. Bir parça yapmak için gereken tüm kontrol özelliklerini sağlar.

Geçerli mod ekranın üst kısmında bulunan başlık çubuğunda gösterilir.

Diğer modlardaki fonksiyonlara ekran tuşları kullanılarak etkin mod içerisinden erişilebileceğini de dikkate alın. Örneğin, Çalışma modunda iken OFFSET tuşuna basılması halinde etkin bölme olarak ofset tablolarını görüntüleyecektir; OFFSET tuşunu kullanarak ofset ekranını değiştirin, birçok modda PROGRM CONVRS tuşuna basılması geçerli etkin program için düzenleme bölmesine geçiş yapar.

Sekmeli Navigasyon Menüleri

Sekmeli menüler, Parametreler, Ayarlar, Yardım, Programları Listele ve IPS gibi birtakım kontrol fonksiyonlarında kullanılır. Bu menülerde navigasyon yapmak amacıyla bir sekmeyi seçmek için ok tuşlarını kullanın, ardından sekmeyi açmak için Enter (Giriş) tuşuna basın. Seçilen sekmenin alt sekmeler içermesi halinde uygun olanına girmek için ok tuşlarını ve Enter (Giriş) tuşunu kullanın.

Bir sekme yukarı çıkmak için Cancel (İptal) tuşuna basın.

Asili Kumanda Butonu Tanitimi

Tuş takımı sekiz kısma ayrılmıştır: Fonksiyon Tuşları, Elle Kumanda Tuşları, Atlama Tuşları, Ekran Tuşları, İmleç Tuşları, Harf Tuşları, Mod Tuşları ve Nümerik Tuşlar. İlave olarak, asılı kumanda butonu ve tuş takımı üzerinde, aşağıda kısaca açıklanan, muhtelif tuşlar ve özellikler de mevcuttur.

Asili Kumanda Butonu Ön Panel Kontrolleri

Power On (Güç Açma)- Makineyi çalıştırır. Power Off (Güç Kapama)- Makineyi kapatır.

Acil Durdurma - Sarı çerçeveli büyük kırmızı düğme. Bütün eksenlerin hareketini durdurmak, servoları devredışı bırakmak, iş milini ve takım değiştiriciyi durdurmak ve soğutma sıvısı pompasını kapatmak için basın. Sıfırlamak için çevirin.

El Kumandası - Bu, eksenleri elle kumanda etmek için kullanılır (Elle Kumanda Modunda seçin). Ayrıca düzenleme esnasında program kodu veya menü öğelerinde gezinmek için de kullanılır.

Cycle Start (Çevrim Başlatma) - Bir programı başlatır. Bu buton Grafik modunda bir program simülasyonunu başlatmak için de kullanılır.

0

Besleme Bekletme - Tüm eksen hareketini durdurur. İptal etmek için Çevrim Başlat'a basın. Not: İş mili, kesme esnasında dönmeye devam edecektir.

Askili Kumanda Butonu Tarafi Panel Kontrolleri

USB - Bu porta uyumlu USB cihazları takın.

Bellek Kilidi - Anahtarlı şalter. Programları ve ayarları değişikliğe karşı korumak için kilit konumuna getirin. Değişikliklere izin vermek için kilidi açın.

Kurulum Modu - Anahtarlı şalter. Kurulum amacıyla makine güvenlik özelliklerini kilitler ve kilidini kaldırır (detaylar için bkz. bu kılavuzun Güvenlik bölümündeki "Kurulum Modu")

İkinci Konum Butonu - Tüm eksenleri G54 P20'de belirtilen koordinatlara hızlandırmak için bu düğmeye basın.

Otomatik Kapı Atlama - Otomatik kapıyı açmak veya kapatmak için bu düğmeye basın (varsa).

Çalışma lambası - Bu düğmeler dahili çalışma lambasını ve Yüksek Yoğunluklu Aydınlatmayı (varsa) açar.

Tuş Takımı Sesli Uyarısı - Parça tepsisinin üzerinde bulunmaktadır. Kapağı çevirerek sesi ayarlayın.

Fonksiyon Tuşları

F1- F4 Tuşları - Bu tuşlar çalıştırma moduna bağlı olarak farklı fonksiyonlara sahiptir. Daha fazla açıklama ve örnekler için o moda ait kısma bakınız.

Tool Offset Meas (Takım Ofset Ölçümü) - Parça ayarı sırasında takım uzunluk ofsetlerinin kaydedilmesi için kullanılır.

Next Tool (Sonraki Takım) - Takım değiştiriciden bir sonraki takımı seçmek için kullanılır. Kurulum'da (Setup) Takım Ofset Ölçümü'ne (Tool Offset Measure)

Tool Release (Takım Ayırma) - MDI modu, referansa gitme (zero return) modu, veya elle kumanda kolu modunda iken takımı iş milinden ayırır.

Part Zero Set (Parça Sıfır Ayarı) - Parça ayarı sırasında iş koordinatları ofsetlerini kaydetmek için kullanılır (Çalıştırma bölümündeki Ofsetlerin Ayarlanmasına

ELLE KUMANDA TUŞLARI

Chip FWD (Talaş Burgusu İleri) - Opsiyonel talaş burgusunu "İleri" istikamette, talaşları makineden dışarı atacak şekilde çalıştırır.

Chip Stop (Talaş Burgusu Durdurucusu) - Matkabın hareketini durdurur.

Chip REV (Talaş Burgusu Ters Yönde) - Opsiyonel talaş burgusunu, matkaptaki sıkışıklıkları ve artıkları temizlemede işe yarayan bir şekilde "Ters" yönde çalıştırır.

X/-X, Y/-Y, Z/-Z, A/-A ve B/-B (eksen tuşları)- O işe ait butonu basılı halde tutarak veya istenilen eksen butonuna basarak ve el kumandasını kullanarak, manüel olarak eksenin kumanda edilmesine olanak sağlar.

Jog Lock - Eksen anahtarları ile çalışır. El kilidine ve sonra bir eksen anahtarına basın, eksen tekrar el kilidine basılana kadar azami yola doğru hareket edecektir.

CLNT Up (Soğutma Sıvısı Yukarı) - Opsiyonel Programlanabilir Soğutma Sıvısının (P-Cool) memesini yukarı hareket ettirir.

CLNT Down (Soğutma Suyu Aşağı) - Opsiyonel P-Cool memesini aşağı hareket ettirir.

AUX CLNT (Yardımcı Soğutma Sıvısı) - MDI modundayken bu tuşa basılması opsiyonel Takım İçerisinden Su Verme (TSC) sistemini açar; ikinci defa basılması TSC'yi kapatacaktır.

Atlama Tuşları

Bu tuşlar kullanıcıya, kesmesiz (hızlı) eksenlerin hareketini, programlanan beslemeleri ve iş mili hızlarını atlayabilme yeteneğini sağlar.

- -10 Mevcut ilerleme hızını %10 azaltır.
- **100%** Kumanda atlanan ilerleme hızını programlanan ilerleme hızına ayarlar.
- +10 Mevcut ilerleme hızını %10 artırır.
- -10 Mevcut iş mili hızını %10 azaltır.
- %100 Atlanan iş mili hızını programlanan hıza ayarlar.
- +10 Mevcut iş mili hızını %10 artırır.

Hand Cntrl Feed (Elle Kumanda İlerleme Hızı) - Bu butona basılması, kullanılacak olan el kumandasının ilerleme hızına ±%1'lik artışlarla kumanda edilmesini sağlar.

Hand Cntrl Spin (Elle Kumanda Edilen İş Mili) - Bu butona basılması, kullanılacak olan elle kumanda kolunun iş mili hızını ±%1'lik artışlarla kumanda etmesini sağlar.

CW - İş milini, saat yönünde çalıştırır. Bu buton, CE (ihraç) makinelerde devre dışıdır.

CCW - İş milini, saat yönünün tersine çalıştırır. Bu buton, CE (ihraç) makinelerde devre dışıdır.

CW veya CCW butonları kullanılarak, makine Tek Satır tahdidinde olduğu veya Besleme Bekletme butonu basılı halde olduğu her zaman, iş mili çalıştırılabilir veya durdurulabilir. Program Çevrim Başlatma ile yeniden çalıştırıldığında, iş mili daha önceden tanımlanmış olan devrine geri döndürülecektir.

STOP (DURDUR) - İş milini durdurur.

%5 / %25 / %50 / %100 Hizli - Makinenin hızlarını tuşun üzerindeki değerle sınırlandırır. %100 Hızlı butonu maksimum hıza izin verir.

Atlamanın Kullanımı

Çalışma esnasında ilerleme hızı, programlanan değerin %0'ından %999'ına kadar değiştirilebilir. Bu, ilerleme hızı +%10, -%10 ve %100 butonları ile yapılır. İlerleme hızı atlama, G74 ve G84 frezese diş açma çevrimleri esnasında etkisizdir. İlerlemeyi değiştirme yardımcı hiçbir eksenin hızını değiştirmez. Elle kumanda esnasında, ilerlemeyi değiştirme tuş takımından seçilen değerleri ayarlayacaktır. Bu, elle kumanda hızının hassas bir şekilde kumandasına olanak sağlar.

İş mili hızı da, iş mili atlamaları kullanılarak %0'dan %999'a kadar değiştirilebilir. Bu ayrıca G74 ve G84 için de etkisizdir. Tek Satır modunda iş mili durdurulabilir. Programa devam edildiğinde otomatik olarak çalışacaktır (Çevrim Başlatma butonuna basarak).

Elle Kumanda İlerleme Hızı tuşuna basarak, ayrıca el kumandası ilerleme hızını da %0 ila %999 arasında \pm %1'lik artışlarla kumanda etmek için kullanılabilir. Elle Kumanda Edilen İş Mili tuşuna basarak, ayrıca el kumandası iş mili hızını %0 ila %999 arasında \pm %1'lik artışlarla kumanda etmek için kullanılabilir.

Hızlı hareketler (G00), tuş takımı kullanılarak maksimumun %5, %25 veya %50'siyle sınırlandırılabilir. Eğer %100 hız çok fazla ise, Ayar 10 vasıtasıyla maksimumun %50'sine ayarlanabilir.

Ayarlar (Settings) sayfasında, operatörün kullanmasını engelleyecek şekilde, atlama tuşlarını devre dışı bırakmak mümkündür. Bunlar Ayarlar 19, 20 ve 21'dir.

Besleme Bekletme (Feed Hold) butonu, basıldığında hızlı ve besleme hareketlerini durdurduğu için bir atlama butonu olarak işlev görür. Bir Feed Hold (Besleme Bekletme) tuşunun ardından, devam etmek için Cycle Start (Çevrim Başlatma) butonuna basılmalıdır. İlişikteki kapak anahtarı da aynı sonucu verecektir, ancak kapak açıldığında ekranda "Door Hold (Kapak Bekletme)" görünecektir. Kapak kapatıldığında ise kumanda Feed Hold (Besleme Bekletme) seçeneğinde olacak ve devam etmek için Cycle Start (Çevrim Başlatma) tuşuna basılması gerekecektir. Kapak Bekletme ve Besleme Bekletme, yardımcı herhangi bir ekseni durdurmaz.

Operatör, COOLNT butonuna basarak soğutma sıvısı ayarını atlayabilir. Pompa, bir sonraki M-koduna veya operatörün faaliyetine kadar ya açık, yada kapalı kalacaktır (bakınız Ayar 32).

Atlamalar, bir M06, M30 ile ve/veya RESET'e (Sıfırlama) basarak fabrika ayarlarına getirilebilir (Bakınız Ayarlar 83, 87, 88).

Ekran Tuşları

Ekran tuşları makinenin ekranlarına, çalışması ile ilgili bilgilere ve yardım sayfalarına erişimi sağlar. Genellikle bir fonksiyon modu içerisinde aktif bölmeleri değiştirmek için kullanılırlar. Bu tuşlardan bazıları bir kereden fazla basıldığında ilave ekranları göstereceklerdir.

Prgrm/Convrs - Birçok modda aktif program bölmesini seçer. MDI/DNC modunda VQC ve IPS/WIPS (varsa)'ye erişmek için basın.

Posit (Konum) - Pek çok ekranın alt orta kısmında bulunan konumlar bölmesini seçer. Geçerli eksen konumlarını görüntüler. POSIT tuşuna basarak göreli konumlar arasında değiştirin. Bölmede görüntülenen eksenleri filtrelemek için görüntülenecek her eksene karşılık gelen harfi yazın ve WRITE/ENTER (Yaz/Gir) tuşuna basın. Her bir eksen konumu belirtilen sırayla görüntülenir.

Ofset - İki ofset tablosu arasında görüntülemeyi değiştirmek için basın. Görüntülenecek Takım Ofsetleri tablosunu seçin ve takım uzunluk geometrisini, yarıçap ofsetlerini, aşınma ofsetlerini ve soğutma sıvısı konumunu düzenleyin. Programlarda kullanılan G-kodu ile belirlenen çalışma ofseti konumlarını düzenlemek üzere Work Offsets (Çalışma Ofsetleri) tablosunu seçin.

Curnt Comds (Geçerli Komutlar) - Maintenance (Bakım), Tool Life (Takım Ömrü), Tool Load (Yakım Yükü), Advanced Tool Management (ATM) (Gelişmiş Takım Yönetimi), Barfeeder (Çubuk Besleyici), System Variables (Sistem Değişkenleri), Clock settings (Saat ayarları) ve timer / counter (zamanlayıcı / saat) ayarları menüleri arasında dolaşmak için PAGE UP (Önceki Sayfa) / PAGE DOWN (Sonraki Sayfa) tuşlarına basın.

Alarm / Mesgs (Alarmlar / Mesajlar) - Alarm izleme ve mesaj ekranlarını gösterir. Üç adet alarm ekranı mevcuttur, bunlardan ilki halihazırda aktif olan alarmları gösterir (Alarm/Mesgs butonuna ilk basışta). Alarm Geçmişini görmek için Sağ Ok tuşuna basın. Alarm geçmişi girdileri arasında gezinmek için Yukarı ve Aşağı Ok tuşlarını kullanın ve bir bellek aygıtına kaydetmek için F2 tuşuna basın.

Param / Dgnos (Parametreler / Arıza Bulma) - Makinenin çalışmasını açıklayan parametreleri gösterir. Parametreler sekmeli bir menüde kategorilere göre düzenlenmişlerdir veya bilinen bir parametreyi bulmak için numarayı yazın ve yukarı veya aşağı ok tuşuna basın. Parametreler fabrikada ayarlanmıştır ve yetkili Haas personeli haricinde hiç kimse tarafından değiştirilmemelidir.

Param / Dgnos tuşuna ikinci kez basılması, arıza bulma verilerinin ilk sayfasını gösterecektir. Bu bilgiler daha çok yetkili bir Haas teknisyeni tarafından arıza tespiti için kullanılır. Arıza bulma verilerinin ilk sayfası bağımsız giriş ve çıkışlardır. Page Down'a (Sonraki Sayfa) basılması, ilave diyagnostik veri sayfalarını görüntüler.

Setng / Graph (Ayarlar / Grafik) - Kullanıcı ayarlarının gösterilmesine ve değiştirilmesine olanak sağlar. Parametreler gibi Ayarlar (Settings) da sekmeli bir menüde kategorilere göre düzenlenmişlerdir. Bilinen bir ayarı bulmak için, numarasını yazınız ve yukarı veya aşağı ok tuşuna basınız.

Setng / Graph tuşuna ikinci bir kez basılması Grafik modunu aktif hale getirir. Grafik modunda programın üretilen takım güzergahı görülür ve gerekirse, çalıştırmadan önce programda hata ayıklama işlemi gerçekleştirilebilir (Bakınız Çalıştırma bölümündeki Grafik Modu)

Help / Calc (Yardım / Hesap Makinesi) - Yardım konularını sekmeli bir menüde görüntüler. Daha fazla bilgi için "Sekmeli Yardım / Hesaplayıcı Fonksiyon" bölümüne bakın.

İmleç Tuşları

Kontrolde çeşitli ekranlara ve alanlara geçmek için İmleç Tuşlarını kullanın ve CNC programlarını düzenleyin.

Home (Referans) - Bu buton imleci ekranda en üst kısma alacaktır; düzenlemede, burası programın sol üst bloğudur.

Yukarı / Aşağı Oklar - bir madde, blok veya alan yukarı/aşağı hareket ettirir.

Önceki Sayfa/Sonraki Sayfa - Bir programı görüntülerken göstergeleri değiştirmek veya bir sayfa yukarı/ aşağı hareket ettirmek için kullanılır.

Sol Ok - Bir programı görüntülerken tek tek düzenlenebilen maddeleri seçmek için kullanılır; imleci sola hareket ettirir. Ayar seçenekleri arasında dolaşmak için kullanılır.

Sağ Ok - Bir programı görüntülerken tek tek düzenlenebilen maddeleri seçmek için kullanılır; imleci sağa hareket ettirir. Ayar seçenekleri içerisinde gezinmek için kullanılır ve grafik moddayken zum penceresini sağa kaydırır.

End - Bu buton, genelde imleci ekrandaki en alt madde üzerine hareket ettirir. Düzenlemede, bu programın son bloğudur.

Harf Tuşları

Harf tuşları, kullanıcının bazı özel karakterlerle birlikte alfabenin harflerini girmesini sağlarlar. Bazı özel karakterler öncelikle "Shift (Üst Karakter)" tuşuna basılarak girilir.

Shift - Shift tuşu klavye üzerindeki ilave karakterlere erişimi sağlar. İlave karakterler, bazı harf ve nümerik tuşların sol üst köşesinde görülmektedir. Shift ve ardından karaktere basılması veri giriş satırındaki o karakteri girecektir. Metni girerken, UPPER CASE (Büyük Harf) varsayılandır, küçük harf karakterleri girmek için Shift tuşuna basınız ve basılı halde tutunuz.

Bir kumandada beşinci eksen kurulu ise, B ekseni, elle kumanda için Shift butonuna ve ardından da +/-A elle kumanda tuşlarına basılarak seçilir.

EOB - Bu End-Of-Block (Blok Sonu) karakteridir. Ekranda bir noktalı virgül (;) olarak gösterilir ve bir program satırının sonunu belirtir.

() - Parantezler, CNC program komutlarını kullanıcı yorumlarından ayırmak için kullanılır. Daima bir çift olarak girilmelidirler. Not: Bir program alınırken, RS-232 portundan ne zaman geçersiz bir kod satırı alınırsa, bu, programa parantezler arasında ilave edilir.

I - Sağa eğimli kesme işareti Blok Silme özelliğinde ve Makro ifadelerde kullanılır. Eğer bu sembol bir bloktaki ilk sembol ise ve bir Blok Silme aktif halde ise, bu taktirde çalıştırma zamanında o blok ihmal edilir. Sembol ayrıca makro ifadelerde bölme (bölme işlemi) için de kullanılır (bakınız Makro bölümü).

[] - Köşeli parantezler makro fonksiyonlarda kullanılır. Makrolar opsiyonel bir özelliktir.

Mod Tuşları

Mod tuşları, CNC makinesinin takımının çalışma durumunu değiştirir. Bir mod butonuna basıldığında, aynı satırdaki butonlar kullanıcı için hazır hale gelir. Geçerli mod daima ekranın üst merkez kısmında görüntülenir.

EDIT (Düzenle)- Düzenleme modunu seçer. Bu mod, kumandanın hafızasındaki programları düzenlemek için kullanılır. Düzenleme Modu iki düzenleme bölmesi sağlar: bir tanesi geçerli etkin program için ve bir diğeri arkaplan düzenlemesi için. EDIT (Düzenle) tuşuna basarak iki bölme arasında geçiş yapın. Açılır yardım menülerine erişmek için F1 tuşuna basın.

Insert (Araya Gir) - Bu butona basılması, imlecin önündeki programa komutlar girer. Bu buton ayrıca, panodan mevcut imleç konumuna metin de girer ve ayrıca kod bloklarını bir programa kopyalamak için de kullanılır.

Alter (Değiştir) - Bu butona basılması, seçilen komutu veya metni, yeni girilen komutlara veya metne çevirecektir. Bu buton ayrıca, seçilen değişkenleri, panoda depolanan metne değiştirecek yada seçilen bir bloğu diğer bir konuma taşıyacaktır.

Delete (Sil) - İmlecin üzerinde bulunduğu maddeyi siler veya seçilen bir program bloğunu siler.

Undo (Geri Al) - En son 9 düzenleme değişikliğine kadar geri alır ve seçilen bir bloğun seçimini iptal eder.

MEM (Hafıza) - Hafıza modunu seçer. Bir parça yaparken, ekran etkin programları ve diğer gerekli bilgileri görüntüler.

Single Block (Tek Satır) - Tek satırı devreye alır veya iptal eder. Tek satır devredeyken, Çevrim Başlatmaya her basışta programın yalnızca bir saturu icra edilir.

Dry Run (Kuru Çalıştırma) - Bu, bir parça kesmeksizin gerçek makine hareketini kontrol etmek için kullanılır. (Bakınız Çalıştırma bölümünde Kuru Çalıştırma)

Opt Stop (Opsiyonel Durdurma) - Opsiyonel durdurmaları devreye alır veya iptal eder. Ayrıca G-Kod bölümündeki G103'e de bakınız.

Bu özellik AÇIKKEN ve bir M01 (opsiyonel durdurma) kodu programlandığında, makine M01'e ulaştığında duracaktır. Cycle Start (Çevrim Başlatma) düğmesine basıldığında ise makine çalışmaya devam edecektir. Ancak, önden okuma fonksiyonuna (G103) bağlı olarak anında durmayabilir (Bakınız blok önden okuma bölümü). Diğer bir deyişle, blok önden okuma özelliği, Opsiyonel Durdurma komutunun en yakındaki M01'i red etmesine neden olabilir.

Bir program esnasında Opsiyonel Durdurma butonuna basılırsa, Opt Stop butonuna basıldığında seçilen satırdan sonraki satırda etkisini gösterecektir.

Block Delete - Blok silme fonksiyonunu Açar/Kapatır. İlk madde olarak bir kesme işareti ("/") içeren bloklar, bu opsiyon devreye alındığında ihmal edilir (icra edilmez). Bir kod satırı içerisinde bir kesme işareti varsa, eğer bu özellik devreye alınmışsa bu kesme işaretinden sonraki komutlar ihmal edilecektir. Blok Silme, Blok Silme'ye basıldıktan iki satır sonra etkisini gösterecektir, istisna olarak, kesici telafisi kullanıldığı durumda, seçilen satırdan en az dört satır uzaklaşıncaya kadar blok silme etkisini göstermeyecektir. Yüksek hızda işlemede blok silme ihtiva eden güzergahlar için işleme hızı düşecektir. Güç çalıştırıldığında Blok Silme aktif kalacaktır.

MDI/DNC - MDI modu, bir programın yazılabildiği, ancak hafızaya girilmediği yerlerde "Manüel Veri Girişi" modudur. DNC modu "Direkt Nümerik Kontrol", icra edilebilmesi için, büyük programların kumandaya "damlatılarak beslenmesi"ne olanak sağlar (Bakınız DNC modu bölümü).

Coolnt (Soğutma Sıvısı) - Opsiyonel soğutma sıvısını devreye alır veya iptal eder.

Orient Spindle - İş milini verilen bir konuma döndürür ve iş milini kilitler. Parçaları gösterme ayarı sırasında kullanılabilir.

ATC FWD (ATC İLERİ) - Takım taretini bir sonraki takıma doğru döndürür. İş milinin içine belirli bir takım yüklemek için, MDI veya elle kumanda moduna girin, bir takım numarası (T8) yazın ve ATC FWD veya ATC REV'e basın.

Hand Jog (Elle Kumanda) - Elle Kumandadaki her bölüm için, eksen elle kumanda modunu .0001, .1 - 0.0001 inç (metrik 0.001mm) olarak seçer. Kuru çalıştırma için, .1 inç/dak.

.0001/.1, .001/1., .01/10., .1/100. - İnç modundayken ilk rakam (üstteki rakam), elle kumandanın her bir tıklaması için o elle kumanda miktarını seçer. Freze MM modundayken, ekseni elle kumanda ederken, ilk rakam onla çarpılır (örneğin .0001, 0.001 mm olur). İkinci rakam ise (alttaki rakam), kuru çalıştırma modu için ve devir hızı ilerleme hızını ve eksen hareketlerini seçmek için kullanılır.

Zero Ret (Sıfıra Gitme) - Eksen konumunu dört farklı kategoride gösteren Sıfıra Gitme modunu seçer, bunlar; Operatör, İş G54, Makine ve gidilecek mesafefdir (Dist). Kategoriler arasında geçiş yapmak için POSIT tuşuna basın.

All (Tüm) - Bütün eksenleri makine sıfırına alır. Bu, bir takım değişiminin olmaması hariç, Güç Besleme/ Yeniden Çalıştırma'ya benzer. Bu, başlangıçtaki eksenlerin sıfır konumunu tesis etmede kullanılabilir.

Origin (Orijin) - Seçilen göstergeleri ve zamanlayıcıları sıfıra ayarlar.

Singl (Tek) - Bir ekseni makinenin sıfırına geri döndürür. İstenilen eksen harfine basınız ve ardından Singl Axis (Tek Eksen) butonuna basınız. Bu, tek bir ekseni başlangıç ekseni sıfır konumuna hareket ettirmek için kullanılabilir.

HOME G28 - Bütün eksenleri, hızlı harekette sıfıra geri döndürür. Bir eksen harfi girilir ve referans G28 butonuna basılırsa, referans G28 ayrıca tek bir ekseni de aynı şekilde başa döndürecektir. DİKKAT! Operatörü muhtemel bir çarpışmaya karşı ikaz edecek hiçbir uyarı mesajı bulunmamaktadır. Örneğin, X veya Y sıfırlandığında Z-ekseni parçaların arasındaysa, bir çarpışma olabilir.

List Prog (Programları Listele) - Kontroldeki tüm veri yüklemelerini ve kayıtlarını kontrol eder.

Select Prog - Seçilmiş olan programı etkin program yapar. Not: Etkin program, program listesinde kendinden önce gelen bir "A" işareti ile betimlenir. Arzu edilen programların yanına bir onay işareti koymak için WRITE (Yaz)/ENTER (Giriş) tuşuna basarak birden fazla programı yönetin, ardından bir fonksiyon seçmek için F1'e basın.

Send - Programları dışarıya RS-232 seri portundan iletir.

Recv - Programları RS-232 seri portundan alır.

Erase Prog (Prog Sil) - List Prog modunda imleçle seçilen program veya MDI modunda iken tüm programı siler.

Nümerik Tuşlar

Nümerik tuşlar kullanıcıya, kumandaya rakamlar ve birkaç özel karakter girme imkanı sunar.

Cancel (iptal) - İptal tuşu girilen son karakteri silmek için kullanılır.

Space (Boşluk) - Programlar içine veya mesaj alanına yerleştirilen yorumları formatlamak için kullanılır.

Write/Enter (Yaz/Gir) - Genel amaçlı giriş tuşudur.

- (Eksi işareti)- Negatif rakamları girmek için kullanılır.

. (Ondalık Ayracı)- Ondalık hassasiyet için kullanılır.

TARIH VE ZAMAN

Kumanda bir saat ve tarih fonksiyonu içermektedir. Zaman ve tarihi görüntülemek için, tarih ve zaman görününceye kadar CRNT COMDS tuşuna, ardından Page Up /Down (Önceki/Sonraki Sayfa) tuşuna basınız.

Ayarlamalar yapmak için Emergency Stop (Acil Durdurma) tuşuna basın, o günün tarihini (Ay-Gün-Yıl biçiminde) veya o anki saati (Saat:Dakika biçiminde) yazın ve WRITE (Yaz)/ENTER (Giriş) tuşuna basın. Bittikten sonra Acil Durdurmayı sıfırlayın.

Sekmeli Yardim / Hesap Makinesi fonksiyonu

Sekmeli yardım menüsünü görüntülemek için HELP (YARDIM)/CALC (HESAP MAKINESI) tuşuna basın. HELP (YARDIM)/CALC (HESAP MAKINESI) tuşuna basmak açılır bir yardım menüsünü çağırırsa, sekmeli menüye erişmek için HELP/CALC tuşuna tekrar basın. Cursor Arrow (İmleç Ok) tuşlarını kullanarak sekmelerde dolaşın. Sekmeleri seçmek için WRITE (YAZ)/ENTER (GIRIŞ)tuşuna ve bir sekme yukarı geri gelmek için CANCEL (İPTAL) tuşuna basın. Ana sekme kategorileri ve alt sekmeleri burada tanımlanmıştır:

Help (Yardım)

Ekran üzeri yardım sistemi tüm kullanım kılavuzunun içeriğini kapsar. Yardım (Help) sekmesinin seçilmesi içindekiler bölümünü görüntüler. İmleç ok tuşlarını kullanarak bir başlık seçin ve konu içeriklerini görüntülemek için WRITE/ENTER (YAZ/GIR) tuşuna basın. Aynı şekilde alt konu menülerini seçin.

El kumandasını veya Yukarı/Aşağı Ok tuşlarını kullanarak sayfada gezinebilirsiniz. Sonraki başlığa geçmek için Sol/Sağ İmleç Ok tuşlarını kullanın. Ana içindekiler bölümüne geri dönmek için HOME (REFERANS) tuşuna basın.

Kılavuz içeriğini aramak için F1 tuşuna veya Yardım sekmesinden çıkmak veya Arama (Search) sekmesini seçmek için CANCEL (İPTAL) tuşuna basın.

Arama

Anahtar kelime ile yardım içeriğinde arama yapmak için Arama (Search) sekmesini kullanın. Metin alanına arama teriminizi girin ve aramayı başlatmak için F1 tuşuna basın. Sonuçlar sayfası arama teriminizi içeren başlıkları görüntüler; bir başlığı belirleyin ve görüntülemek için WRITE/ENTER (YAZ/GIR) tuşuna basın.

Matkap Tablosu

Ondalık eşdeğerler ve kılavuz boyutlarını belirten bir matkap boyut tablosunu görüntüler.

Hesap Makinesi

Hesap makinesi fonksiyonları üçüncü Yardım sekmesinin altında mevcuttur. Alt sekmelerden hesap makinesi modunu seçin ve kullanmak için WRITE (YAZ)/ENTER (GIRIŞ) tuşuna basın.

Hesap Makinesi fonksiyonlarının tamamı, basit toplama, çıkarma, çarpma ve bölme işlemlerini yapacaktır. Fonksiyonlardan bir tanesi seçildiğinde, mümkün olan işlemlerle birlikte (LOAD (YÜKLE), +, -, * ve /) bir hesap makinesi penceresi belirecektir. LOAD (YÜKLE) başlangıçta seçili haldedir ve diğer opsiyonlar, sol ve sağ imleç okları ile seçilebilir. Rakamlar yazarak ve WRITE/ENTER (YAZ/GIR) tuşuna basarak girilirler. Bir rakam girildiğinde ve LOAD (YÜKLE) seçildiğinde, o rakam hesap makinesi penceresine doğrudan girilecektir. Diğer fonksiyonlardan bir tanesi (+ - * *I*) seçiliyken bir rakam girildiğinde, bu hesaplama yeni girilen rakamla ve hesap makinesi penceresinde önceden girilmiş olan herhangi bir rakamla yapılacaktır. Hesap makinesi, 23*4-5.2+6/2 gibi matematiksel bir ifadeyi de kabul edecektir ve bunu değerlendirerek (öncelikle çarpma ve bölmeyi icra ederek) sonucu, ki bu durumda 89.8'dir, pencereye yazacaktır.

Etiket seçili iken hiçbir alana veri girilemediğine dikkat edin. Alanı doğrudan değiştirmek amacıyla etiket artık seçili olmayıncaya kadar diğer alanlardaki verileri temizleyin.

Fonksiyon Tuşları: Fonksiyon tuşları, hesaplanan sonuçları, bir programın bir kısmının içine veya Hesap Makinesi özelliğinin diğer bir kısmı içerisine kopyalamak ve yapıştırmak için kullanılabilir.

F3: EDIT (DÜZENLEME) ve MDI modlarında, F3 seçilen üçgen/dairesel frezeleme/frezede kılavuz çek-

me değerini ekranın altındaki veri giriş satırına kopyalayacaktır. Bu, hesaplanan sonucun bir programda kullanılması durumunda kullanışlıdır.

Hesap Makinesi fonksiyonunda F3'e basılması, hesap makinesi penceresindeki değeri Üçgen, Dairesel veya Frezeleme/Frezede Kılavuz Çekme hesaplamaları için seçilen veri girişine kopyalar.

F4: Hesap Makinesi fonksiyonunda, bu buton, hesap makinesi ile yüklenecek, toplanacak, çıkartılacak, çarpılacak veya bölünecek seçili Üçgen, Dairesel veya Frezeleme/Delik Delme veri değerini kullanır.

Trigonometri Yardım Fonksiyonu

Trigonometri hesap makinesi sayfası, üçgenle ilgili bir problemi çözmede yardım edecektir. Bir üçgenin uzunluklarını ve açılarını giriniz; yeterli veri girildikten sonra, kumanda, üçgen problemini çözecek ve değerlerin geri kalanını gösterecektir. İmleç Yukarı/Aşağı butonlarını, WRITE/ENTER (YAZ/GIR) ile girilecek olan değeri seçmek için kullanınız. Birden fazla çözümü olan girişler için, son veri değerinin ikinci bir kez girilmesi, muhtemel ikinci bir çözümün ekranda verilmesine neden olacaktır.

Dairesel İnterpolasyon Yardımı

Dairesel hesap makinesi sayfası, daireyle ilgili bir problemi çözmede yardım edecektir. Merkez, yarıçap, açılar ile başlangıç ve bitiş noktalarını giriniz; yeterli veri girişi yapıldığında, kumanda, dairesel hareketi çözecek ve değerlerin geri kalanını gösterecektir. İmleç Yukarı/Aşağı butonlarını, Write (Yaz) ile girilecek olan değeri seçmek için kullanınız. Bununla birlikte, bu çeşit bir hareket G02 veya G03 ile programlanabilecek şekilde, alternatif formatları da listeleyecektir. Formatlar, İmleç Yukarı/Aşağı butonları kullanılarak seçilebilir ve seçilen satırı düzenlenmekte olan programın içerisine dahil etmek için F3 tuşuna basın.

Birden fazla çözümü olan girişler için, son veri değerinin ikinci bir kez girilmesi, muhtemel ikinci bir çözümün ekranda verilmesine neden olacaktır. CW (Saat Yönünde) değerini CCW (Saat Yönünün Aksi İstikamette) değerine dönüştürmek için, CW/CCW sütununu seçiniz ve WRITE/ENTER (YAZ/GIR) butonuna basınız.

Daire-Doğru Tanjant Hesaplayıcısı

Bu özellik, bir daire ile bir doğrunun tanjant olarak karşılaştığı kesişme noktalarını tespit etme yeteneği sağlar. Bir satırın üzerine, A ve B olarak iki nokta ve bu satırdan uzak yere C olarak üçüncü nokta girin. Kontrol kesişme noktasını hesaplayacaktır. Nokta, C noktasından uzaktaki normal bir doğrunun, o doğru ile olan dik mesafesi ile birlikte, AB doğrusu ile kesiştiği yerdedir.

Daire-Daire Tanjant Hesaplayıcısı

Bu özellik, iki daire veya nokta arasındaki kesişme noktalarını tespit etme yeteneği sunar. Kullanıcı, iki adet dairenin konumunu ve bunların yarıçaplarını girer. Kumanda bu andan itibaren, her iki daireye tanjant olan doğrular tarafından oluşturulan kesişme noktalarını hesaplar. Her giriş durumu için (iki bağlantısız daire), sekiz adede kadar kesişme noktası mevcut olduğunu unutmayın. Düz tanjantlar çizerek dört adet nokta ve çapraz tanjantlar oluşturarak dört adet nokta daha elde edilir. F1 tuşu, bu iki şema arasında geçiş yapmak için kullanılır. "F"e basıldığında kumanda, şemanın bir parçasını tanımlayan başlangıç ve bitiş noktalarını (A, B, C, vs.) isteyecektir. Eğer bu parça bir yay ise kumanda ayrıca C veya W (CW veya CCW) değerlerini de isteyecektir. Bu anda G kodu ekranın alt kısmında verilir. "T" girildiğinde, önceki bitiş noktası yeni başlangıç noktası haline gelir ve kumanda yeni bir bitiş noktası ister. Çözümü (kod satırını) girmek için, MDI veya Edit'e (Düzenleme) geçiniz ve G-kodu zaten giriş satırında iken F3'e basınız.

Delme/Kılavuz Şeması

Sekmeli yardım menüsünde bir Matkap ve Kılavuz Çizelgesi mevcuttur.

İş Mili İsitma Programı

Herhangi bir iş mili 4 günden fazla atıl kalmışsa çalışma öncesinde bir ısınma çevrimine tabi tutulmalıdır. Bu ısıtma yağın çökmesi nedeniyle olası iş mili aşırı ısınmasını önleyecektir. Makinede iş mili hızını yavaşça yükselten ve iş milinin termal kararlılığa ulaşmasını sağlayan bir 20-dakikalık ısınma programı (numara 002020) bulunur. Bu program, yüksek devirli kullanım öncesinde iş mili ısınma amacıyla günlük olarak kullanılabilir.

Soğutma Sivisi Seviye Göstergesi

Soğutma sıvısı seviyesi MEM modunda veya CURNT COMDS ekranında ekranın üst sağ tarafında görüntülenir. Dikey bir çubuk soğutma sıvısının durumunu gösterir. Soğutma sıvısı, fasılalı soğutma sıvısı akışına neden olabilecek bir noktaya ulaştığında gösterge yanıp sönecektir.

İş İşareti

İşaret lambası makinenin mevcut durumunun hızlı görsel onayını sağlar. Dört farklı işaret durumu vardır:

Off (Kapalı) - Makine beklemede.

Koyu Yeşil - Makine çalışıyor.

Yanıp Sönen Yeşil - Makine durdurulmuş ancak hazır durumunda. Devam etmek için operatör girişi gereklidir.

Yanıp Sönen Kırmızı - Bir hata oluşmuş veya makine Acil Durdurma durumunda.

Seçenekler

200 Saat Kumanda Opsiyonu Denemesi

Aktif hale getirmek için normalde bir kilit açma kodu gerektiren opsiyonlar, bunu açmak için gerekli olan kilit açma kodu yerine, "1" rakamını girerek isteğe göre aktif hale ve pasif hale getirilirler. Opsiyonu kapatmak için bir "0" giriniz. Bu şekilde aktif hale getirilen bir opsiyon, toplam 200 saatlik çalışmadan sonra otomatik olarak pasif hale getirilir. Pasif hale getirmenin, çalışırken değil, yalnızca makineye giden güç beslemesi kapatıldığında oluştuğuna dikkat ediniz. Bir opsiyon, kilit açma kodunu girerek, kalıcı olarak aktif hale getirilebilir. "T" harfinin, 200 saat periyodu süresince, parametre ekranı üzerinde opsiyonun sağına doğru gösterileceğine dikkat ediniz.

Seçeneüe 1 veya 0 girmek için, Acil Durdurma düğmesine basın ve Ayar 7'yi (Parametre Kilidi) kapatın. Opsiyon 100 saate ulaştığında, makine, deneme süresinin hemen hemen dolduğunu belirten bir alarm ikazı verecektir. Bir opsiyonu kalıcı olarak aktif hale getirmek için, bayiinizle temasa geçiniz.

Rigid Tapping (Rijit Kılavuz Çekme)

Senkronize kılavuz çekme masraflı, yüzer kılavuz tutucularına duyulan ihitiyacı ortadan kaldırır ve kılavuz diş distorsiyonu ve başlangıç dişi dışarı çekilmesini önler.

Makrolar

Özel korunmalı çevrimler, izleme yordamları, operatör komutu, matematik denklemleri veya fonksiyonları ve parça familyalarının işlenmesi için değişkenlerle alt yordamlar yaratın.

Dönme ve Ölçme

İş parçası kurulumunu hızlandırmak için veya bir deseni başka bir konuma veya yönlendirme bileziğinin etrafında döndürmek için iş parçası ofset probunun yanısıra döndürmeyi kullanın. Takım yolunu veya bir desenini küçültmek veya genişletmek için ölçeklendirmeyi kullanın.

İş Mili Pozisyonlama

İş Mili Pozisyonlama seçeneği, geri besleme için standart iş mili motorunu ve standart iş mili eknoderi kullanılarak iş milinin belirli bir programlanmış açıya pozisyonlanmasını sağlar. Bu seçenek masrafsız, doğru (0.1 derece) pozisyonlama sağlar.

Yüksek Hızda İşleme

Yüksek hızda işleme, malzemenin talaş kaldırma oranında artışa, yüzey finişinin geliştirilmesine ve işleme maliyetini azaltacak ve takımların ömrünü uzatacak kesim güçlerinin azaltılmasına olanak sağlar.

Yüksek Hızda İşleme, tipik kalıp yapmadaki gibi düzgün biçimde üç boyutlu şekillere işleme uygulamak için ihtiyaç duyulur. Haas Yüksek Hızda İşleme opsiyonu 80 bloğa kadar önden okuma miktarını arttırır ve besleme stroklarının harmanlanması için tam devir (dakika başına 500 inç) sağlar.

Bir strok harmanından diğerine geçerken ilerleme hızının yüksek kalabileceği düzgün harmanlanmış şekiller ile yüksek hızda işşlemenin en iyi şekilde çalıştığının anlaşılması çok önemlidir. Keskin köşeler varsa, kumanda daima yavaşlamak zorunda kalacaktır veya köşe yuvarlatma oluşacaktır.

Strokların harmanlanmasında ilerleme hızına olan etki daima yavaşlayan harekettir. Bu nedenle programlanan ilerleme hızı (F) azamidir ve kontrol bazen gereken hassasiyeti sağlamak için daha da yavaş ilerleyecektir.

Çok kısa bir strok boyu birçok veri noktasına neden olabilir. Saniye başına 1000 bloğu geçemediğinden emin olmak için CAD/CAM sisteminin veri noktalarını nasıl ürettiğini kontrol edin.

Çok az sayıda veri noktası hem "facetting (kesme&parlatma)" hem de kumandanın ilerleme hızının yavaşlatması gerekeceği kadar büyük olan harmanlama açılarına neden olabilir. İstenilen düzgün güzergahın gerçekte istenilen düzgünlükte güzergaha yeterince yakın olmayan kısa, düz stroklardan yapıldığı zaman kesme & parlatma uygulanır.

High Speed Tooling (Yüksek Hızda İşleme) – Takım tutucuları mümkünse naylon bir destek vidası ile bir AT-3 olmalıdır. AT-3 dizaynında elde edilen toleranslar bir yüksek devir işlemi için tavsiye edilen asgari değerlerdir. Naylon destek vidası takım üzerindeki pens kavramasını arttırır ve soğutma sıvısı transferine yardımcı olacak daha iyi bir keçeleme yaratır.

En iyi kavrama ve tek merkezlilik için tek açılı pensli aynaları ve pensleri kullanın. Bu pens sistemleri tutamağa yerleştirilen uzun bir tek açıdan oluşur. Taraf başına açı en iyi sonuçlar için sekiz derece veya daha az olmalıdır. Azami rijitlik ve yakın tolerans belirlendiğinde çift açılı pens sistemleri kullanmaktan kaçınınız. Çift parçalı tek açık pensdeki deliğin tam uzunluğunun asgari 2/3 kavrama olması önerilir. Buna rağmen müm-künse en iyi sonuçlar için 3/4 tam kavrama tercih edilir.

Yüksek Yoğunluklu Aydınlatma - Yardımcı lambalar çalışma alanının iyi şekilde aydınlatılmasını sağlar. Lambalar kapılar açıldığında ve kapandığında otomatik olarak çalışır veya asılı kumanda butonunun yan tarafındaki anahtar kullanılarak manüel olarak çalıştırılabilir. Anahtarı açık konuma getirdiğinizde, kapı açıldığında ve kapatıldığında yanacaktır. Anahtarı kapalı konuma getirdiğinizde, kapı açıldığında lambalar yanmayacaktır. Bakınız ayar 238.

Uzaktan El Kumandasi

İleri Uzaktan El Kumandası (RJH) arttırılmış fonksiyonellik için bir likit kristal ekrana (LCD) ve kontrollere sahiptir. Ayrıca yüksek yoğunluklu LED işaret lambasına sahiptir.

Bu konularda daha fazla bilgi için ofsetler ve makine çalışması ile ilgili bölüme başvurun.

LCD – Makine verisini ve RJH-E/C arayüzeyini görüntüler.

Fonksiyon Tuşları (F1-F5) - Değişken fonksiyon tuşları. Her bir tuş LCD ekranın altındaki bir etikete karşılık gelir. Bir fonsiyon tuşuna basılması ilgili menüyü açacak veya o menüye geçecektir. Açık olduğunda atlanan fonksiyonlar gösterilecektir.

Cycle Start (Çevrim Başlatma) - Programlanan eksen hareketini başlatır.

Feed Hold (Besleme Bekletme) - Programlanan eksen hareketini durdurur.

Ok Tuşları - Menü alanları arasında dolaşmak (yukarı/aşağı) ve kademeli elle kumanda hızlarını seçmek (sol/ sağ) seçmek için kullanılır.

Dişli Çark - Seçilen artış kadar seçili ekseni elle kumanda eder. Kontrol üzerindeki el kumandası gibi çalışırş.

Mekik Kumanda Topuzu - Merkezden 45 derece saat yönünde veya saat yönünün tersine kadar döndürür ve bırakıldığında merkeze döner. Eksenleri değişken hızlarda elle kumanda etmek için kullanılır. Mekik elle kumandası merkez pozisyondan ne kadar çok döndülürse eksen o kadar hızlı hareket eder. Hareketi durdurmak amacıyla topuzun merkeze dönmesine izin verin.
Eksen Seçimi - Elle kumanda için kullanılabilir eksenlerden herhangi birini seçmek için kullanılır. Seçili eksen ekranın alt kısmında gösterilir. Bu selektörün en sağ konumu yardımcı menüye erişmek için kullanılır.

Ünitenin beşikten/kılıftan çıkarılması üniteyi açar ve kumanda kontrolünü asılı kumanda butonundan Uzaktan El Kumandasına verir (Asılı kumanda butonu üzerindeki el çarkı devre dışı bırakılır).

NOT: Asılı kumanda butonu Elle Kumanda modunda (Kurulum) olmalıdır.

Uzaktan El Kumandasını gücünü kapatmak için beşik/kılıfının içinde geri yerleştirin kumanda kontrolünü asılı kumanda butonuna geri döndürün.

Kademe topuzu ve mekik topuzu takım ofseti, boyu, aşınması vb. gibi kullanıcı tanımlı alanın değerini değiştirmek için kaydırıcı olarak çalışır.

Dahili "Panik" Fonksiyonu — İş milini ve tüm eksen hareketini anında durdurmak için eksen hareketi sırasında herhangi bir tuşa basın. İş mili hareket ederken ve kontrol Elle Kumanda modunda iken Feed Hold (Besleme Bekletme) tuşuna basılması iş milini durduracaktır. Ekranda "Button pressed while axis was moving—Reselect Axis (Eksen hareket ederken düğmeye basıldı—Ekseni yeniden seçin)" mesajı görüntülenir. Silmek için eksen seçim topuzunu farklı bir eksene hareket ettirin.

Mekik elle kumandası döndürülürken eksen seçim topuzu hareket ettirildiğinde, ekranda "Axis selection changed while axis was moving—Reselect Axis (Eksen hareket ederken eksen seçimi değiştirildi— Ekseni Yeniden Seçin)" mesajı görüntülenir ve tüm eksen hareketi durur. Hatayı silmek için eksen seçim topuzunu farklı bir eksene hareket ettirin.

Uzaktan El Kumandası beşiğinden/kılıfından çıkarıldığında veya kontrol modu hareket ile bir moda değiştirildiğinde (örneğin, MDI'den Elle Kumanda moduna) mekik elle kumanda topuzu merkez pozisyonundan döndürüldürülürse, ekranda "Shuttle off center—No Axis selected (Mekik merkez dışında—Hiçbir Eksen seçili değil)" mesajı görüntülenir ve hiçbir eksen hareketi gerçekleşmez. Hatayı silmek için eksen seçim topuzunu hareket ettirin.

Mekik elle kumanda topuzu kullanımda iken kademeli elle kumanda topuzu döndürüldüğünde, Uzaktan El Kumandası ekranında "Conflicting jog commands— Reselect Axis (Çelişen elle kumanda komutları— Ekseni Yeniden Seçin" mesajı görüntülenir, ve tüm eksen hareketi durur. Hatayı ortadan kaldırmak için eksen seçme topuzunu farklı bir eksene getirin, ardından bir önceki seçili ekseni yeniden seçmek için geri dönün.

NOT: Eksen seçim topuzu hareket ettirildiğinde yukarıdaki hatalardan herhangi biri silinemediğinde, mekik elle kumanda topuzu ile ilgili bir problem olabilir. Onarım/değişim için Haas servisine başvurun.

Herhangi bir nedenle Uzaktan El Kumandası ile kontrol arasında temas kopukluğu olduğunda (kablo kesiği veya bağlantısızlık, vb.), tüm eksen hareketi durur. Yeniden bağlandığında, Uzaktan El Kumandası ekranında "RJH / Control Communication Fault—Reselect Axis (RJH / Kontrol İletişim Hatası—Ekseni Yeniden Seçin)" mesajı görüntülenir. Hatayı silmek için eksen seçim topuzunu hareket ettirin. Hata silinmediğinde, üniteyi beşiğine/kılıfına yerleştirin, gücünün kapanmasını bekleyin ve sonra beşiğinden/kılıfından çıkarın.

RJH Menüleri

RJH Manüel Elle Kumanda

Bu menü geçerli makine pozisyonunun geniş bir ekranını içerir. Mekik kumanda veya kademeli topuzu çevirmek halen seçili olan ekseni geçerli seçili kumamda artışı oranında hareket ettirir. Sol/sağ ok tuşları ile kumanda artışını değiştirin. Koordinat sistemini değiştirmek için OPER, WORK, MACH, veya TO GO seçeneklerine basın (etkin olarak seçilen). Operatör konumunu sıfırlamak amacıyla konumu seçmek için OPER altında fpnksiyon tuşuna basın ardından fonksiyon tuşuna tekrar basın (şimdi SIFIR değerini okumaktadır).

. 0001	1anual – .001	Joggin – <mark>.01</mark>	g 1
X :	0.	.0000	in
Y:	0	. 0000	in
Z:	0	0000	in
OPER	Hork Ma	СН ТО С	i0 TOOL>

Manüel Elle Kumanda Ekranı

RJH Takım Ofsetleri

Takım ofsetlerini ayarlamak ve kontrol etmek için bu menüyü kullanın. Fonksiyon tuşlarını kullanarak alanları seçin ve kademeli veya mekik topuzu kullanarak değerleri değiştirin. Parmakla döndürülen topuzu kullanarak eksenleri seçin. Eksen hattı (ekranın alt kısmında) bu ekseni kumanda etmek için vurgulanmalıdır. Geçerli Z ekseni konumunu ofset tablosunun içine ayarlamak için ENTER (Giriş) tuşuna basın. Tablo değerlerinde ayarlama yapmak için ADJST'ye basın, değerde yapılacak artış veya azalış miktarını seçmek için kademeli veya mekik topuzu kullanın (artış miktarını değiştirmek için sol ve sağ okları kullanın), ardından ayarı uygulamak için ENTER tuşuna basın. Takımları değiştirmek için TOOL tuşuna basın ve seçili takım için soğutma sıvısı konumunu değiştirmek için COOL' basın.

DİKKAT: Takımları değiştirirken iş milinden uzakta durun.

Set Tool Offsets .0001 – .001 – <mark>.01</mark> – .1
Tool in spindle 1 Tool offset: 1 Length: 4.0470 Coolant pos: 15
Z 0.0000 SET Z ADJST TOOL COOL WORK>

Takım Ofsetlerini Ayarlama Ekranı

RJH İş Parçası Ofsetleri

İş ofseti G kodunu değiştirmek için WK CS'ye basın. Ekranın alt kısmındaki eksen alanı seçili olduğunda mekik ve kademeli topuz ile seçili ekseni manüel olarak elle kumanda edin. Geçerli eksenin geçerli konumunu iş ofseti tablosu içerisine ayarlamak için SET'e basın. Eksen seçiciyi bir sonraki eksene hareket ettirin ve bu ekseni ayarlamak için işlemi tekrarlayın. Belirlenmiş bir değerde ayarlamalar yapmak için eksen seçiciyi istenen eksene getirin. ADJST'ye basın ve ayarlama değerini artırmak veya azaltmak için kademeli veya mekik topuzu kullanın, ardından ayarlamayı uygulamak için ENTER tuşuna basın.

.000	Set Wor 1 – .00	k Offsets 1 – <mark>.01</mark> –	. 1
Work	CS G52		
	X :	0.0000	
	Υ:	0.0000	
	Z:	0.0000	
L	X	0.0000	
SET X	ADJST W	k cs	JOG>

İş Parçası Ofsetleri Ekranını Ayarlama

Yardımcı Menü

RJH yardımcı menüsü makine soğutma sıvısını ve RJH işaret lambasını kontrol edecek özelliklere sahiptir. Eksen seçiciyi en sağ konuma hareket ettirerek menüye erişin (RHJ kutusu içerisinde kalıplanmış bir sayfa ikonu ile belirtilmiştir). Karşılık gelen fonksiyon tuşlarına basarak mevcut özelliklerin arasında geçiş yapın.

Yardımcı Menü

Hizmet Programı Menüsü

UTIL Menüsü

RJH'nin mevcut yapılandırılmasına ilişkin bilgilere erişir. Bu bilgi servis teknisyenleri tarafından diyagnostik amaçlı olarak kullanılır. Yardımcı Menüye geri dönmek için AUX'a basın.

Program Ekranı (Çalışma Modu)

Bu mod halen çalışmakta olan programı görüntüler. Asılı kumanda butonu üzerindeki MEM veya MDI seçeneklerine basarak çalıştırma moduna girin. Ekranın altındaki sekme seçenekleri soğutma sıvısı açma/kapama, tek satır, isteğe bağlı durdurma ve blok silme için kontroller sunar. COOL gibi geçilen komutlar açıldığında seçili olarak görünecektir. CYCLE START (Çevrim Başlatma) ve FEED HOLD (Besleme Bekletme) düğmeleri asılı kumanda butonu üzerindeki düğmeler gibi çalışır. Asılı kumanda butonu üzerindeki HAND JOG (Elle Kumanda Kolu) seçeneğine basarak elle kumanda moduna geri dönün veya programı asılı kumanda butonundan çalıştırmaya devam etmek için Uzaktan El Kumandasını beşiğine/kılıfına yerleştirin. Ön Panel Kontrolleri

Power On (Güç Açma)- Makineyi çalıştırır.

Power Off (Güç Kapama)- Makineyi kapatır.

Acil Durdurma - Sarı çerçeveli büyük kırmızı düğme. Bütün eksenlerin hareketini, iş milini ve takım değiştiriciyi durdurmak ve soğutma sıvısı pompasını kapatmak için basın. Sıfırlamak için çevirin.

Jog Handle (El Kumandası) - Bu, bütün eksenleri elle kumanda etmek için kullanılır. Program kodu veya düzenleme esnasında menü maddeleri içerisinde gezinmek için de kullanılabilir.

Cycle Start (Çevrim Başlatma) - Bir programı başlatır. Bu buton Grafik modunda bir program simülasyonunu başlatmak için de kullanılır.

Besleme Bekletme - Tüm eksen hareketini durdurur. İptal etmek için Çevrim Başlat'a basın. Not: İş mili, kesme esnasında dönmeye devam edecektir.

Yan Panel Kontrolleri

USB - Bu porta uyumlu USB cihazları takın.

Bellek Kilidi - Anahtarlı şalter. Programları ve ayarları değişikliğe karşı korumak için kilit konumuna getirin. Değişikliklere izin vermek için kilidi açın.

Kurulum Modu - Anahtarlı şalter. Kurulum amaçları için makine güvenlik özelliklerini kilitler ve kilidini açar (detaylar için bkz. "Kurulum Modu" bölümü).

İkinci Konum Butonu - Tüm eksenleri G54 P20'de belirtilen koordinatlara hızlandırmak için bu düğmeye basın.

Otomatik Kapı Atlama - Otomatik kapıyı açmak veya kapatmak için bu düğmeye basın (varsa).

Çalışma lambası - Bu düğmeler dahili çalışma lambasını ve Yüksek Yoğunluklu Aydınlatmayı (varsa) açar.

Çalıştırma

MAKINEYE YOL VERME

Asılı kumanda butonu üzerindeki Güç Besleme butonuna basarak makineyi çalıştırınız.

Makine kendi kendine testten geçecek ve ardından, eğer bir mesaj bırakılmışsa Messages (Mesajlar) ekranını yada Alarms (Alarmlar) ekranını gösterecektir. Her iki durumda da tornada bir veya daha fazla alarm olacaktır (102 SERVOS OFF).

Ekranın sol tarafındaki 'mod durum kutusu'ndaki yönlendirmeleri izleyin. Genellikle 'Güç Verme' veya 'Tüm Eksenler Otomatik' işlemlerinin kullanılabilir olması için kapıda çevrim başlatılmalı ve Acil Durdurma düğmesine basılmalı ve silinmelidir. Güvenlik kilidi özellikleri hakkında daha fazla bilgi için, bu kılavuzdaki "Güvenlik" bölümüne başvurun.

Her bir alarmı silmek için Sıfırlama düğmesine basın. Bir alarm temizlenemiyorsa, makinenin bakıma gereksinimi olabilir, eğer durum böyleyse bayinizi arayınız.

Alarmlar temizlendikten sonra, makine, bütün işlemleri başlatacağı bir referans noktasına ihtiyaç duyar; bu nokta "Home (Referans)" olarak adlandırılır. Makineyi referansa döndürmek için, Power-Up Restart (Güç Besleme Yeniden Başlatma) butonuna basınız.

UYARI! Bu butona basıldığında otomatik hareket başlayacaktır. Makinenin ve takım değiştiricinin iç bölümünden uzak tutun.

Eğer varsa, Güç besleme/Sıfırlama (Power-Up/Reset) butonuna basmakla alarm 102'nin otomatik olarak silineceğini unutmayın.

Referans bulunduktan sonra, Current Commands (Mevcut Komutlar) sayfası gösterilir ve makine artık çalışmaya hazırdır.

Programlamaya Giriş

Manüel Veri Girişi (MDI)

Manüel Veri Girişi (MDI), biçimsel bir program kullanmaksızın otomatik CNC hareketlerini komuta etmek için bir yöntemdir.

Bu moda girmek için MDI/DNC butonuna basınız. Programlama kodları, komutları yazarak ve her satırın sonunda Enter'a (Giriş) basarak girilir. End of Block'ın (EOB/Satır Sonu) her satırın sonuna otomatik olarak eklendiğine dikkat ediniz.

MDI programını düzenlemek için, Edit (Düzenleme) butonunun sağındaki tuşları kullanınız. Değişen noktaya imleci getiriniz, daha sonra farklı düzenleme fonksiyonları kullanılabilir.

Satıra ilave bir komut eklemek için komutu giriniz ve Enter'a (Giriş) basınız.

Bir değeri değiştirmek için, komutu seçmek üzere ok butonlarını veya el kumandasını kullanınız, yeni komutu giriniz ve Alter'a (Değiştir) basınız.

Bir komutu silmek için, komutu seçiniz ve Delete'e (Sil) basınız.

Undo (Geri Al) tuşu, MDI programına yapılan değişiklikleri (9 kereye kadar) geri alacaktır.

Bir MDI programı, kumandanın hafızasına kaydedilebilir. Bunu yapmak için, programın başına imleci alın (veya Home'a (Referans) tuşuna basın), bir program adı girin (programlar, Onnnnn; 5 adede kadar rakamın izlediği "O" harfi formatını kullanarak adlandırılmalıdır) ve Alter (Değiştir) tuşuna basın. Bu, programı programlar listesine ekleyecek ve MDI sayfasını temizleyecektir. Programa yeniden erişim için, List Prog'a (Programları Listele) basınız ve onu seçiniz.

MDI'daki veriler, MDI modundan çıktıktan sonra ve makine kapatıldığında kaybolmaz.

Mevcut MDI komutlarını temizlemek için Erase Prog (Programı Sil) butonuna basınız.

Numarali Programlar

Yeni bir program yaratmak için, program ekranına ve programlar listesi moduna girmek üzere LIST PROG'a (PROGRAMLARI LİSTELE) basınız. Bir program numarası (Onnnn) giriniz ve Select Prog (Program Seçimi) tuşuna veya Enter'a (Giriş) basınız. Eğer program mevcutsa, seçilecektir. Eğer henüz mevcut değilse, yaratılacaktır. Yeni programı göstermek için Edit'e (Düzenle) basınız. Yeni bir program yalnızca programın adı ve End of Block'tan (Satır Sonu) (;) oluşacaktır.

NOT: Yeni programlar oluştururken O09XXX sayılarının kullanımı önerilmez. Makro programlar genellikle bu bloktaki sayıları kullanırlar ve bunların üzerine yazılması makine işlevlerinin durmasına neden olabilir. (Örnek: O09876 üzerine yazılması G47 çalışmalarının (oyma) arızalanmasına neden olacaktır).

Numaralı programlar makine kapatıldığında muhafaza edilecektir.

MDI'nın Temel Düzenlemesi ve Numaralı Programlar

Bir MDI programı ile numaralı bir program arasındaki tek fark O kodudur. Bir MDI programı düzenlemek için sadece MDI'ya basınız. Numaralı bir programı düzenlemek için ise onu seçiniz, daha sonra Edit'e (Düzenle) basınız.

Program düzenleme modu program verisi içinde bir tip içerir ve enter tuşuna basın. Program verileri üç kategoriye ayrılır: adresler, yorumlar veya EOB'ler (Satır Sonları).

	EDIT: EDIT					
PROGRAM EDIT	000741	(CYCLE START TO SIMULATE)		PROGRAM EDIT	000741	
G00 X0 Z0.1	l ;					
G/4 Z-0.345	FU.U3 KU.1 ;					
, GOO X2. ZO.	1;					
G74 X1. Z-4	. 10.2 K0.75 [1	0255 ;				
uuu X3. 20.	1					

Mevcut programa program kodunu ilave etmek için, ilave kodun önüne geleceği kodu seçiniz, veriyi giriniz ve Insert (Araya Gir) tuşuna basınız. Insert'e (Araya Gir) basmadan önce, X, Y, ve Z gibi, birden fazla sayıda kod girilebilir.

Adres verileri, nümerik bir değerin izlediği bir harftir. Örneğin: G04 P1.0; G04 bir beklemeye (duraklama) komuta eder ve P1.0 bu beklemenin uzunluğudur (1 saniye).

Yorumlar harf veya nümerik karakterler olabilir, ancak başlarında parantez olmalıdır. Örneğin: (1 saniye bekleme). Yorumlar maksimum 80 karakter olabilir.

End of Blocks (Satır Sonu), EOB butonuna basarak girilir ve bir noktalı virgül (;) olarak gösterilir. Bunlar, bir paragrafın sonundaki satır sonu gibi kullanılırlar. CNC programlamada, bir EOB, bir program kodu dizisinin sonuna girilir.

Üç tip komutu da kullanan bir kod satırına örnek şu şekilde olacaktır:

G04 P1. (1 saniye bekleme);

Komutlar arasına herhangi bir sembol veya boşluk koymaya gerek yoktur. Okuma ve düzenleme kolaylığı sağlamak amacıyla öğelerin arasına otomatik olarak bir boşluk girilmektedir.

Karakterleri değiştirmek için, ok tuşlarını veya el kumandasını kullanarak programın arzu edilen bir kısmını seçiniz, yeni kodu giriniz ve Alter'a (Değiştir) basınız.

Karakterleri veya komutları yok etmek için, metni seçin ve Delete (Sil) tuşuna basın.

Her bir satır girildiğinde program kaydedildiğinden, bir kaydet komutu mevcut değildir.

Bir MDI programı numaralı bir programa çevirme

Bir MDI programı numaralı bir programa çevrilebilir ve program listesine eklenebilir. Bunu yapmak için, programın başına imleci alınız (veya Home'a (Referans) basınız), bir program adı giriniz (programlar, Onnnnn; 5 adede kadar rakamın izlediği "O" harfi formatını kullanarak adlandırılmalıdır) ve Alter'a (Değiştir) basınız. Bu, programı, programlar listesine ekleyecek ve MDI'yı temizleyecektir. Programa yeniden erişim için, List Prog'a (Programları Listele) basınız ve onu seçiniz.

Program araması

MDI, EDIT (DÜZENLEME) veya MEM modundayken, belirli kodlar ve metin için, programda arama yapmak üzere imleç yukarı ve aşağı tuşları kullanılabilir. Belirli karakterin(-lerin) aranması için, veri giriş satırına (yani G40) karakteri(-leri) giriniz ve imleç yukarı veya aşağı tuşlarına basınız. İmleç yukarı tuşu girilen maddeyi geriye doğru (programın başına doğru) arayacak ve imleç aşağı tuşu ise ileriye doğru (programın sonuna doğru) arayacaktır.

Programların Silinmesi

Bir programı silmek için LIST PROG'a basınız. Program numarasını seçmek için imleç yukarı veya aşağı tuşlarını kullanın ve ardından ERASE PROG (Program Sil) tuşuna basın. Silmeyi onaylamak için uyarı iletisinde Y (E) seçeneğini seçin veya vazgeçmek için N (H)'yi seçin. Veya program numarasını yazıp ERASE PROG (Program Sil) tuşuna basın; ancak, Y(E)/N(H) uyarısı bulunmadığı ve program derhal silineceği için bu seçeneği dikkatlice kullanın.

Listedeki tüm programları silmek için listenin sonundaki ALL (TÜMÜ) seçeneğini seçin ve ERASE PROG (PROGRAMI SİL) tuşuna basın. Makine ile birlikte teslim alacağınız bazı önemli programlar mevcuttur; bunlar O02020 (iş mili ısıtması), O09997'dir (Görsel Hızlı Kod) ve and O09876 (font dosyasının oyulması). Tüm programları silmeden önce bu programları bir bellek cihazına veya bilgisayara kaydedin. O09XXX programlarını silinmeye karşı korumak için Ayar 23'ü açın.

NOT: UNDO (GERİ AL) tuşu silinen programları geri getirmeyecektir.

Programların Yeniden Adlandırılması

Bir programın numarası Edit (Düzenleme) modunda yeni bir sayı girilerek ve Alter (Değiştir) düğmesine basılarak değiştirilebilir. Önceki bölümde listelenenler gibi önemli programların kaza ile üzerine yazılmamasına dikkat edin.

Maksimum Program Adedi

Eğer kumandanın hafızasında maksimum sayıda program (500) mevcutsa, "DIR FULL (KLASÖR DOLU)" mesajı verilecek ve yeni programlar yaratılamayacaktır.

Program Seçimi

"List Prog"a basarak program dizinini giriniz; bu işlem depolanan programları görüntüleyecektir. İstenilen programa geliniz ve programı seçmek için "Select Prog (Programı Seç)"a basınız. Program adının girilmesi ve "Select Prog (Programı Seç)"a basılması da bir programı seçecektir.

"Select Prog (Programı Seç)"a bir kez basıldığında, program adının yanında "A" harfi belirir. Mod, MEM'e değiştirildiğinde ve CYCLE START (ÇEVRİM BAŞLATMA) tuşuna basıldığında çalıştırılacak olan bu programdır. Bu aynı zamanda EDIT (DÜZENLEME) ekranında da görüntülenendir.

MEM modunda, program numarasını (Onnnn) girerek ve Yukarı/Aşağı oka veya **F4** tuşuna basılarak, başka bir program hızlı bir şekilde seçilebilir ve gösterilebilir.

Makine kapatıldıktan sonra, seçilen program seçili olarak kalacaktır.

Programların CNC Kumandasına Yüklenmesi

Numaralı programlar CNC kumandasından kişisel bir bilgisayara (PC) ve tekrar geriye kopyalanabilir. Programların sonu ".txt" ile biten bir dosyaya kopyalanmaları en iyisidir. Böylelikle bütün PC'lerde basit bir metin dosyası olarak tanınacaklardır. Programlar, RS-232 ve USB gibi birçok farklı yöntemlerle aktarılabilirler. Ayarlar, ofsetler ve makro değişkenleri aynı şekilde CNC ile bir PC arasında aktarılabilirler.

Eğer CNC tarafından bozulmuş veriler alınırsa, bunlar bir yoruma dönüştürülür, programda depolanır ve bir alarm mesajı verilir. Yine de veriler kontrole yüklenecektir.

USB / Sabit Disk / Eternet Aygıt Yöneticisi

Haas kontrolü, makine üzerinde mevcut olan bellek aygıtlarını sekmeli bir menüde gösteren bir aygıt yöneticisine sahiptir.

Aygıt Yöneticisine (Device Manager) girmek için "List Prog" düğmesine basın. Uygun aygıtı seçmek için ok tuşlarını kullanarak sekmeli menüde gezinin ve Enter tuşuna basın.

Bir aygıt sekmesi içerisindeki bir program listesine göz atarken programları seçmek için yukarı/aşağı ok tuşlarını kullanın ve seçilen programı seçime eklemek için Enter tuşuna basın.

Not: Harici USB sabit disk sürücüleri sadece FAT veya FAT32 olarak formatlandığında çalışır. NTFS formatlı cihazlar çalışmayacaktır. Cihazlarının ne olarak formatlandığını öğrenmek için; bilgisayarınıza bağlayın, Windows Explorer'daki sürücü üzerine sağ tıklayın ve Özellikleri seçin.

Aşağıdaki örnek USB aygıtının dizinini gösterir. Bellekteki seçilen program bir "A" ile gösterilir. Ayrıca seçili dosya etkin program ekranında gösterilecektir.

Sekmeli Menü Navigasyonu	Etkin Program Seçili Program Etkin Sekme
Imleç Okları: Dolaşım Sekmeleri WRITE (Yaz)/ENTER (Giriş): Bir Sekme seçer CANCEL (IPTAL): Bir Sekme Yukarıya Geri Gelir	MEMORY FLOPPY HARD DRIVE USB DEVICE NET SHARE CURRENT DIRECTORY: USB DEVICE SHARE DRIVER
Program Seçimi İmleç Okları: Seçme imlecini hareket ettirirler WRITE (Yaz)/ENTER (Giriş): Programı Seçime ekler (Bir Onay İşareti Yerleştirilir) SELECT PROG (PROGRAM SEÇME): Seçilen Programı Etkin Program haline getirir ("A") veya FNC için Program seçer INSERT (EKLEME): Geçerli Dizinde Yeni Klasör oluşturur (Klasör Adını yazın, ardından Ekleyin) ALTER (Değiştir): Klasörü veya Programı yeniden adlandırır	O 1133 WORK ORDER 7/ 0 11234 (WORK ORDER 7/ 0 12234 (WORK ORDER 11) FITTING PROJECT 2 ALL Seçili Program
Yardım Modu Açılır Yardım Menüsüne Erişmek için HELP/	3 PROGRAMS 88% FREE (889260 KB)
CALC tuşuna basın. Imleç Ok Tuşlarını kullanarak gezinin. Seçili Programlar için Seçenekleri seçin (Kopyala, Sil, vs.)	Use CUKSUH keys to navgate listing and CANCEL to go back to devices. ✓ : FILES IN SELECTION Press HELP for Help listing. A CTIVE PROGRAM (001254)

Navigasyon Dizinleri

Bir alt dizine girmek için alt dizinin üzerine gelin ve "Enter" (Giriş)'a basın.

Alt dizinden çıkmak için alt dizinin en üstüne gidin veya Cancel (İptal) tuşuna basın.

Dizin Oluşturma

Bir ad girerek ve "Insert (Ekle)" tuşuna basarak yeni bir klasör oluşturun.

Yeni bir alt dizin oluşturmak için, yeni alt dizinin yer alacağı dzine gidin, bir ad girin ve "Insert" (Ekle) tuşuna basın. Alt dizinler adlarını takip eden <DIR>" ile görüntülenirler.

Dosyaların Kopyalanması

Bir dosyayı belirleyin ve seçmek için "Enter" (Giriş) tuşuna basın. Dosya adının yanında bir onay işareti belirir.

Ok tuşlarıyla hedef dizine gidin, "Enter" (Giriş) tuşuna basın ve dosyayı kopyalamak için F2 tuşuna basın.

Kumanda belleğinden bir aygıta kopyalanan dosyaların dosya adına eklenen ".NC" uzantısı olduğuna dikkat edin. Bununla birlikte, hedef dizine gidip yeni bir ad girilerek ve sonra F2 tuşuna basılarak ad değiştirilebilir.

Bir Dosyanın Çoğaltılması

Aygıt Yöneticisine erişmek için List Prog (Programları Listele) seçeneğine basın. Bellek sekmesini seçin. İmleci çoğaltılacak programa getirin, yeni bir program numarası girin (Onnnn), ve F2 tuşuna basın. Seçilen programın kopyası yeni adla çıkartılmış olur ve etkin program yapılır. Bir dosyanın kopyasını farklı bir aygıta çıkarmak için imleci program adının üzerine getirin ve yeni dosya adı girmeden F2 tuşuna basın. Bir açılır menü hedef aygıtları listeler. Bir aygıt seçin ve dosyanın kopyasını çıkarmak için Enter (Giriş) tuşuna basın. Çoklu dosyaları kopyalamak için, her dosya adına bir onay işareti koymak için Enter (Giriş) tuşuna basın.

Dosya Adlandırma Kuralı

Dosya adları tipik bir sekiz-nokta-üç formatında tutulmalıdır. Örneğin: program1.txt. Bununla birlikte, bazı CAD/CAM programları kabul edilebilir olan dosya tipi tanıması olarak ".NC" kullanır. Dosya adları uzantısız program numaralarının aynısı da olabilir, ancak bazı PC uygulamaları dosyayı tanımayabilir.

Kumandada geliştirilen dosyalar 5 basamakla devam eden "O" harfi ile adlandırılacaklardır. Örneğin O12345.

Yeniden Adlandırma

USB veya Sabit Sürücüdeki bir dosyanın adını değiştirmek için, dosyayı seçin, yeni bir ad yazın ve "Alter" (Değiştirme) tuşuna basın.

Silme

Bir program dosyasını bir aygıttan silmek için, dosyayı seçin ve "Erase Prog" (Programı Sil) tuşuna basın. Bunları seçerek çoklu dosyaları silin (Seçime bir dosya eklemek ve yanına bir onay işareti koymak için Enter (Giriş) tuşuna basın; tekrar Enter tuşuna basarak seçimi kaldırın), sonra tüm seçili dosyaları silmek için Erase Prog (Prog Sil) tuşuna basın.

Ekran Yardımı

"HELP/CALC" tuşuna basarak Ekran yardımına ulaşılabilir. Açılır menüden fonksiyonları seçin ve çalıştırmak için "Enter" (Giriş) tuşuna basın veya kayıtlı kısa yol tuşunu kullanın. Yardım ekranından çıkmak için, aygıt yöneticisine geri dönmek üzere "Cancel" (İptal) tuşuna basın.

RS-232

RS-232, Haas CNC Kumandasını diğer bir bilgisayara bağlamanın bir yöntemidir. Bu özellik programcıya, bir PC'den programlar, ayar ve takım ofsetleri gönderme ve yükleme yeteneği sunar.

Programlar, (Operatörün asılı kumanda butonu değil) kontrol kutusunun yan kısmında bulunan RS-232 portu (Seri Port 1) üzerinden gönderilir veya alınır.

CNC kumandasını PC'ye irtibatlamak için bir kablo (sete dahil değildir) gerekmektedir. İki adet RS-232 bağlantı tarzı mevcuttur: 25-pimli konektör ve 9-pimli konektör. 9-pimli konektör daha çok PC'lerde kullanılır.

UYARI! Elektronik hasara neden olan en büyük nedenlerden bir tanesi, CNC frezesi ile bilgisayarın her ikisi üzerinde de iyi bir topraklama olmamasıdır. Topraklama olmaması, CNC'ye veya bilgisayara yada her ikisine birden zarar verecektir.

Kablo uzunluğu

Aşağıda, baud hızı ve buna karşılık gelen maksimum kablo uzunluğu verilmiştir.

9,600 baud hızı: 100 fit'lik (30 m) RS-232 38,400 baud hızı: 25 fit'lik (8 m) RS-232 115,200 baud hızı: 6 fit'lik (2 m) RS-232

Haas kontrolü ile diğer bilgisayar arasındaki ayarlar birbirleri ile uyuşmalıdır. CNC kumandasında ayarlarda değişiklik yapmak için, Settings (Ayarlar) sayfasına girin (Setng/Graph'a basınız) ve RS-232 ayarlarına gidin (veya "11" girin ve yukarı veya aşağı oka basın). Ayarları seçmek için yukarı/aşağı ok tuşlarını ve değerleri değiştirmek için sol ve sağ ok tuşlarını kullanın. Uygun seçim yapıldığında Enter'a (Giriş) basınız.

RS-232 portuna kumanda eden ayarlar (ve varsayılanlar) şunlardır:

- 11 Baud Hızı (9600)
- 12 Parite (Çift)
- 13 Durdurma Bitleri (1)

24 Delinecek Kılavuz (Yok) 25 EOB (Satır Sonu) Paterni (CR LF) 37 Rakam Veri Bitleri (7)

14 Senkronizasyon Xaçık/Xkapalı

Haas kumandası ile bağlantı kurabilen farklı bazı programlar mevcuttur. Bunlara bir örnek, çoğu Microsoft Windows uygulamaları ile kurulan Hyper Terminal (Hiper Terminal) programıdır. Bu program üzerindeki ayarları değiştirmek için, sol üst kısımdaki "File (Dosya)" açılır menüsüne gidiniz. Menüden "Properties (Özellikler)" seçeneğini işaretleyiniz ve daha sonra "Configure (Düzenle)" butonuna basınız. Bu, port ayarlarını açacaktır; CNC kumandasındakilerle uyumlu hale getirmek için bunları değiştiriniz.

PC'den bir program indirmek için LIST PROG tuşuna basınız. İmleci ALL (TÜMÜ) kelimesine getiriniz ve RECV RS-232 tuşuna basınız ve giriş işleminin sonunu belirten bir "%" işareti alıncaya kadar kumanda, bütün ana ve alt programları indirecektir. Kumandadan PC'ye gönderilen tüm programlar tek bir "%" işaretini içeren bir satır ile başlamalı ve tek bir "%" işaretini içeren bir satır ile sonlanmalıdırlar. "ALL (Tümü)" kelimesini kullanırken, programların Haas formatlı bir program numarasına (Onnnnn) sahip olmaları gerektiğine dikkat ediniz. Eğer bir program numarası yoksa, RECV RS-232'ye basmadan önce bir program numarası yazın, böylece program bu numara altında kaydedilecektir. Veya giriş için mevcut bir programı seçin ve bu eskisi ile yer değiştirecektir.

PC'ye bir program göndermek için, programı seçmek üzere imleci kullanınız ve SEND (GÖNDER) RS-232 tuşuna basınız. Kumandanın hafızasındaki tüm programları göndermek için "ALL (Tümü)"u seçin. RS-232 çıkışına boşluklar ilave edebilmek ve programların okunabilirliğini artırmak için bir ayar (Ayar 41) devreye alınabilir.

"LIST PROG" modu seçilerek, istenilen gösterge ekranı seçilerek ve SEND (GÖNDER) tuşuna basılarak, parametreler, ayarlar, ofsetler ve makro değişkenler sayfaları da RS-232 üzerinden teker teker gönderilebilir. Bunlar, RECV tuşuna basılarak ve PC üzerinden alınacak olan dosyayı seçerek indirilebilirler.

Dosya, CNC kumandasından dosya adına ".txt" eklenerek bir PC üzerinde izlenebilir. Daha sonra, Windows Not Defteri gibi bir program kullanarak dosyayı PC üzerinde açın.

Eğer bir işlem iptal mesajı alınırsa, freze ile PC arasındaki ayarları ve kabloyu edin.

Dosya Silme

List Prog sayfasında, "DEL <dosyaadı>" yazın. Yaz (WRITE) tuşuna basın ve dosya silinecektir.

FILE NUMERIC CONTROL (FNC) / DOSYA SAYISAL KONTROL

Bir program kendi yerinden veya ağdan veya bir depolama cihazından, bir USB sürücüsü gibi, çalıştırılabilir. Bir programı böyle bir konumdan çalıştırmak için Device Manager (Aygıt Yöneticisi) ekranına gidin (List Prog'a basın), seçili aygıtta bir programı seçin ve Select Prog (Program Seç)'a basın. Program etkin programlar bölmesinde görüntülenecektir ve List Prog'da program adının yanında bir "FNC" ibaresi belirerek bunun geçerli etkin FNC programı olduğunu belirtecektir. Alt programın ana programla aynı dizinde olması koşulu ile alt programlar bir M98 kullanılarak çağrılabilir. Ayrıca, alt program Haas adlandırma kuralı kullanılarak adlandırılmış ve büyük küçük harfe duyarlı olmalıdır, örneğin O12345.nc.

DİKKAT! Program uzaktan değiştirilebilir ve değişiklik program bir dahaki sefer çalıştırıldığı zaman etkisini gösterecektir. CNC programı çalışırken alt programlar değiştirilebilir.

Pogram düzenlemeye FNC'de izin verilmez. Program görüntülenebilir ve içerisine göz atılabilir ancak düzenlenemez. Düzenleme ağa bağlı bir bilgisayardan veya programı belleğe yüklemek suretiyle yapılabilir.

FNC içerisinde bir program çalıştırmak için:

1. List Prog'a basın, ardından uygun alet için (USB, sabit sürücü, Ağ Paylaşımı) sekmeli menüye gelin.

2. İmleçi arzu edilen programın üzerine getirin ve Select Prog'a basın. Program Etkin Program bölmesinde belirecek ve doğrudan bellek aygıtından çalıştırılabilecektir.

FNC'den çıkmak için, programı tekrar belirleyin ve Select Prog'a basın veya CNC belleğindeki bir programı seçin.

HAAS EDITÖRÜNÜN (FNC) KULLANIMI

Haas Editörü Haas kumandası içine gömülü uygulamayı düzenleyen bir programdır. Ayrıca, Haas Editörü ya MainCon kartına ya da Sabit Disk Sürücüsü/Enet optiton'a (revizyon 13.03 veya sonrası) ihtiyaç duyar ve parametre 737 Ortak Anahtar 5 Bit 9 Haas Editörünü Etkinleştir 1 olarak ayarlanmalıdır.

Haas Editörü Gelişmiş Editör ile aynı benzer fonksiyonları sağlar, aynı zamanda kumandada program geliştirmesini ilerletmek için, çoklu doküman görüntüleme ve düzenleme dahil yeni özelliklere sahiptir.

Programın Yüklenmesi

1. LIST PROG menüsünün USB, Sabit Disk Sürücü veya Net Share sekmesindeki bir programı seçin ve aktif program yapmak için SELECT PROG tuşuna basın (Haas Editöründe, programlar FNC'de açılır, ancak düzenlenebilir değildir).

- 2. Program yüklü iken, odağı program düzenleme bölümüne kaydırmak için DÜZENLE (EDIT) tuşuna basın.
- 3. Başlangıç ekran modu aktif programı solda ve program listesini sağda gösterir.

	EDIT: LIST	
DITOR File Edit Search Modify	MEMORY USB DEVICE	
00 004001.txt	CURRENT DIRECTORY: USB DEVICE	V
004001; <u>(V*ench Demo)</u> ; Hr:Nin - 13:59); (1-1010AL DRILL); (12-39 DIAL FACEMILL); (12-59 DIAL FACEMILL); (14-250 DIAL 2 FLT. E.M.); (14-250 DIAL 2 FLT. E.M.); (15-60 DEC. BARGARY/CHAMFER TOOL);	4. (USB DEVICE) 20weg.txt d Findtext.txt FindtextMD.txt hd.txt Mubgen.txt TE 004001.txt	22251447 08-10-2009 16: 74 192 08-10-2009 15: 57 192 07-29-2009 17: 19 192 03-20-2009 14: 42 158 04-01-2009 14: 17 378801 08-10-2009 14: 58 13570 08-10-2009 16: 20
(Local M97 Sub-Programs Used); (M97 P2002); (CALLS 2ND OP. MILL PROGRAM); (M97 P2003); (CALLS 2ND OP. POCKET PROGRAM); (M97 P2004);		
(CALLS 1ST & ZNO OP. CHAMFER PGM); (WORK OFFSET M54 UMPER RIGHT); (COONER OF PART.); (WORK OFFSET M55 IS THE LARGE); (UOK OFFSET M55 IS THE LARGE); (UTA X-AXIS, AND IS Y-, 9157 FROM); (ZHRO IN Y-AXIS.);	7 FILES	ENPTY FILE SELECTION
(); ; F1 For Menu TKN US	8 ✓ : FILES IN SELECTION 8 : ACTIVE PROGRAM (000000)	A file in FNC is locked for any operation. To deselect from FNC press SELECT PROG.

Menü Navigasyonu

Menüye erişmek için F1 tuşuna basın. Menü kategorileri arasında dolaşmak için sol ve sağ imleç ok tuşlarını veya el kumandasını kullanın ve bir kategori içindeki bir seçeneği seçmek için yukarı ve aşağı imleç ok tuşlarını kullanın. Menü seçimi yapmak için YAZ/GİR (WRITE/ENTER) düğmesine basın.

EKRAN MODLARI

Üç ekran modu mevcuttur. Dosya menüsündeki "Görüntüyü Değiştir (Change View)" komutunu kullanarak ekran modlarında değişiklik yapın veya PRGRM/DÖNŞTR (PRGRM/CONVRS) düğmesine basın.

List (Listele) sekmeli LIST PROG menüsü yanında mevcut FNC programını gösterir.

Ana (Main) sekmeli bölümde bir defada bir program gösterir (Dosya menüsündeki "Programları Değiştir (Swap Programs)" komutunu kullanarak veya F4 tuşuna basarak sekmeler arasında değişim yapabilirsiniz).

Böl (Split) sol tarafta mevcut FNC programını ve sağ tarafta sekmeli bölümde mevcut açık programları gösterir. Dosya menüsündeki "Sol veya Sağ Tarafa Geç" seçeneğini kullanarak veya DÜZENLE (EDIT) düğmesine basarak aktif panele geçin. Sekmeli bölüm aktifken, Dosya menüsündeki "Programları Değiştir (Swap Programs)" komutunu kullanarak veya F4 tuşuna basarak sekmeler arasında değişim yapın.

ALT BILGIYI GÖRÜNTÜLE

Program ekranının alt bilgi bölümü program ve etkin modlar hakkındaki sistem mesajlarını ve diğer bilgileri gösterir. Alt bilgi tüm üç gösterge modunda mevcuttur.

İlk alan yanıtları (kırmızı metin olarak) ve diğer sistem mesajlarını gösterir. Örneğin, bir program değiştirilmişse ve kaydedilmesi gerekiyorsa, bu alanda "KAYDETMEK İÇİN GÖNDERE BAS (PRESS SEND TO SAVE)" görünür.

Sonraki alan etkin el kumandası değiştirme modunu görüntüler. TKN editörün şu anda program boyunca belirteçten belirtece geçtiğini gösterir. Program boyunca sürekli elle kumanda gezinme modunu LNE'ye değiştirir ve imleç satır satır geçecektir. Program boyunca elle kumandaya devam etmek gezinme modunu PGE'ye değiştirir, her defasında bir sayfa atlar.

Son alan aktif programın kaydedildiği cihazı (HD, USB, NET) gösterir. Bu ekran program kaydedilmediğinde veya pano düzenlenirken boş olacaktır.

Çoklu Programların Açılması

Haas Editöründe en fazla üç program aynı anda açılabilir. Haas Editöründe başka bir program açıkken mevcut bir programı açmak için:

1. Menüye erişmek için F1 tuşuna basın.

2. "Dosya (File)" kategorisi altında, "Mevcut Dosyayı Aç (Open Existing File)" seçeneğini seçin.

3. Program listesi görüntülenir. Programın bulunduğu yerdeki cihaz sekmesini seçin, yukarı/aşağı imleç ok tuşlarını veya el kumandası ile programı seçin ve PROG SEÇ (SELECT PROG) tuşuna basın. Ekran sekmeli bir bölmede sol tarafta FNC programı ve sağ tarafta yeni açılan program ve FNC programı ile bölünmüş moda değişir. Sekmeli bölümdeki programı değiştirmek için, sekmeli bölme aktifken Dosya menüsündeki "Programları Değiştir (Swap Programs)" komutunu seçin veya F4 tuşuna basın.

SATIR NUMARALARINI GÖRÜNTÜLE

Program metninden bağımsız satır numaraları görüntülenebilir. Bunları görüntülemek için Dosya menüsünden "Satır Numaralarını Göster (Show Line Numbers)" komutunu seçin. Bunların Nxx satır numaraları ile aynı olmadığını unutmayın; bunlar programı görüntülerken sadece referans içindir. Satır numaralarını saklamak için, Dosya menüsünde seçeneği yeniden seçin.

Mevcut Dosyayı Aç

Yeni bir sekmedeki LIST PROG menüsünden bir dosya açar.

Dosyayı Kapat

Etkin aktif dosyayı kapatır. Dosya değiştirilmişse, kumanda kapatmadan önce kaydetmeyi soracaktır.

Kaydet

Etkin aktif dosyayı aynı dosya adı ile kaydeder. Kısa Yol Tuşu: GÖNDER (SEND) (bir değişiklik yapıldıktan sonra)

Not: Programlar otomatik olarak kaydedilmez. Değişiklikleri kaydetmeden önce güç kaybedildiyse veya kapandıysa, bu değişiklikler kaybedilecektir. Düzenlerken programı sıkça kaydettiğinizden emin olun.

Farklı Kaydet

Etkin aktif dosyayı yeni dosya adı ile kaydeder.

Programları Değiştir

Sonraki programı sekme yığınının üstündeki sekmeli bir bölüme getirir. Kısa Yol Tuşu: F4

Sol veya Sağ Tarafa Geçiş

Aktif program penceresini değiştirir (mevcut aktif pencere beyaz bir arkaplana sahiptir). *Kısa Yol Tuşu:* DÜZENLE (EDIT)

Görünümü Değiştir

Listele (List), Ana (Main) ve Böl (Split) görünüm modları arasında değişim yapar. *Kısa Yol Tuşu: PRGRM/* DÖNŞTR

Satır Numaralarını Göster

Program metninden bağımsız salt referans satır numaralarını görüntüler (Bunlar asla Nxx numaralarında olduğu gibi programın bir parçası olarak kaydedilmezler). Satır numaralarını gizlemek için seçeneği tekrar seçin.

Düzenleme Menüsü

Undo (Geri Alma)

Aktif programda yapılan değişiklikleri geri alır. Blok ve global fonksiyonlar geri alınamaz.

Select Text (Metnin Seçilmesi)

Daha fazla düzenleme fonksiyonlar için metnin bir bloğu seçer. Bu menü seçeneğini seçmeden önce imleci seçmek istediğiniz bloğun ilk satırına getirin. Sonra seçim alanını belirlemek için imleç ok tuşlarını veya el kumandasını kullanarak yukarı veya aşağı geçin. Bloğu seçmek için WRITE/ENTER (YAZ/GİR) veya F2 tuşuna basın. *Kısa Yol Tuşu: F2*

Seçili Metni Taşı/Kopyala/Sil

Seçili metinle çalışmak için bu üç menü seçeneğini kullanın.

Taşı (Move) seçili metni mevcut konumundan kaldırır ve imleç konumundan sonraya yerleştirir. *Kısa Yol Tuşu:* DEĞİŞTİR (ALTER)

Kopyala (Copy) seçili metni mevcut konumundan silmeden imleç konumundan sonraya yerleştirir. *Kısa Yol Tuşu: EKLE (INSERT)*

Sil (Delete) seçili metni programdan kaldırır. Kısa Yol Tuşu: SİL (DELETE)

Seçimi Kes/Panoya Kopyala

Seçili metni panoya yerleştirmek için bu menü seçeneklerini kullanın.

Kes (Cut) seçili metni mevcut programdan kaldırır ve panoya taşır.

Kopyala (Copy) seçili metni programdan kaldırmadan panoya yerleştirir.

Pano program kodu için kalıcı saklama yeridir; panoya kopyalanan metin güç çevrimlerinden sonra bile üzerine yazılmadığı sürece kullanılabilir.

Panodan Yapıştırma

Pano içeriklerini imleç konumu sonrasına yerleştirir. Pano içeriklerini silmez.

Panoyu Gizle/Göster

Konumu ve zamanlayıcıları ve sayaçlar ekranını yerinde görüntülemek için panoyu gizler. Panoyu Göster (Show Clipboard) seçeneğini seçerek pano ekranını tekrar görüntüleyebilirsiniz.

Panoyu Düzenle

Pano içeriklerinde ayarlamalar yapar. Bittiğinde, Düzenleme menüsünde "Panoyu Kapat (Close Clipboard)" seçeneğini seçin.

Not: Haas Editörü panosu Gelişmiş Editör panosundan ayrıdır. Haas Editöründe yapılan düzenlemeler Gelişmiş Editöre yapıştırılamaz.

Arama Menüsü

Find Text (Metni Bul)

Gösterilen yönde arama teriminin ilk bulunduğu yeri bulmak için bir arama terimi ve arama yönü belirleyin. Bir arama yönü seçerken, imleç konumu altındaki terimi aramak için F tuşuna ve imleç konumu üzerindeki terimi aramak için B tuşuna basın.

Find Again (Yeniden Bul)

Arama teriminin sonraki konumunu bulmak için "Metni Bul (Find Text)" aramasından hemen sonra bu fonksiyonu seçin. Bir sonraki konuma geçmek için tekrarlayın.

Bul ve Değiştir

Bir arama terimi ve bununla değiştirilecek bir terimi belirleyin, sonra arama yönünü belirleyin (ileri/geri). Arama teriminin ilk konumu bulunduğunda, kumanda "Değiştir (Evet/Hayır/Tümü/İptal)?" sorusunu soracaktır. Devam etmek için seçiminizin ilk harfini yazın. "Evet" veya "Hayır" seçerseniz, editör seçiminizi yürütecek ve arama teriminin sonraki konumuna gider. Arama teriminin tüm terimlerini otomatik olarak değiştirmek için "Tümü" seçeneğini seçin. Değişklikleri yapmadan önce fonksiyondan çıkmak için "İptal" seçeneğini seçin (bu seçeneği seçerseniz değiştirilen metin aynı kalacaktır).

Takımı Bul

Bu fonksiyon programda takım numaraları arar. Sonraki takım numarasını bulmak için tekrar seçin.

Menüyü Değiştir

Remove All Line Numbers (Bütün Satır Numaralarını Kaldır)

Bu fonksiyon programdaki tüm Nxx satır numaralarını kaldırır.

Renumber All Lines (Bütün Satırları Yeniden Numarala)

Tüm program satırlarını Nxx kodları ile yeniden numaralandırmak için bu fonksiyonu kullanın. Bir başlangıç numarası ve satır numarası artışı seçin.

+ ve - İşaretlerini Tersine Çevir

Tüm pozitif değerleri negatif değerlere ve tam tersine değiştirir.

X ve Y'yi Değiştir

Tüm X değerlerini Y değerlerine ve tam tersine değiştirir.

DIREKT SAYISAL KONTROL (DNC)

Direkt Sayısal Kontrol (DNC), kumandaya bir diğer program yükleme metodudur. Direkt Sayısal Kontrol (DNC), RS-232 portundan alınması esnasında bir programın çalıştırılması yeteneğidir. Bu özellik, RS-232 portundan yüklenen bir programdan, CNC programının boyutuyla ilgili bir kısıtlama olmaması nedeniyle farklıdır. Program, kumanda tarafından, kumandaya gönderilmesi esnasında çalıştırılır; kumandada depolanmaz.

PROGRAM (DNC)	N0000000	PROGRAM (DNC) N0000000
WAITING FOR DNC		ODIODO ; (G-CODE FINAL QC TEST CUT) ; (MATTRIALIS 2x8x8 6061 ALUMINUM) ; ; (MAIN) ; ; MOD ; (READ DIRECTIONS FOR PARAMETERS AND SETTINGS) ; (POR VF-SERIES MACHINES W/ATH AXIS CARDS) ; (USE / FOR HS, VE, VE, AND NON-FORTH MACHINES) ; (CONNECT CABLE FOR HASC BEFORE STARTING THE PROGRAM) ; (SETTINGS TO CHANGE) ; (SETTING 31 SET TO OFF) ; ;
NC RS232		DNC R5232 DNC END FOUND

DNC Program bekliyor

Program DNC'den alındı

DNC, Parametre 57 bit 18 ve ayar 55 kullanılarak aktif hale getirilir. Parametre bitini açın (1) ve Ayar 55'i On (Açık) şeklinde değiştirin. DNC'nin Xmodem ile veya parite seçili olarak çalıştırılması tavsiye edilir, zira bu durumda aktarmadaki bir hata tespit edilecek ve DNC programını çökmeden durduracaktır. CNC kumandası ile diğer bilgisayar arasındaki ayarlar birbirleri ile uyuşmalıdır. CNC kumandasında ayar değişikliği yapmak için, Settings (Ayarlar) sayfasına giriniz (Setng/Graph'a basınız) ve RS-232 ayarlarına gidiniz (veya "11" giriniz ve yukarı veya aşağı oka basınız). Değişkenleri seçmek için yukarı/aşağı okları ve değerleri değiştirmek için sol ve sağ okları kullanınız. Uygun seçim yapıldığında Enter'a (Giriş) basınız.

DNC için önerilen RS-232 ayarları aşağıda verilmiştir:

Ayarlar: 11 Baud Hızı Seçimi: 19200

- 12 Parite Seçimi: YOK
- 13 Durdurma Bitleri:1
- 14 Senkronizasyon: XMODEM
- 37 RS-232 Tarih Bitleri: 8

DNC, sayfanın üst kısmındaki MDI'ya iki kez basarak seçilir (DNC sayfası "Program DNC"). Not: DNC, minimum 8k byte boş kullanıcı hafızasına gereksinim duyar. Bu, List Programs (Programların Listelenmesi) sayfasına giderek ve sayfanın alt kısmından boş hafıza miktarını kontrol ederek yapılabilir.

Kumandaya gönderilen program bir % işareti ile başlamalı ve bitmelidir. RS-232 portu için seçilen veri hızı (Ayar 11), program blok işlem hızına ayak uydurabilecek kadar hızlı olmalıdır. Eğer veri hızı çok yavaşsa, bir kesme işlemi esnasında alet durabilir.

Programı, Cycle Start (Çevrim Başlatma) butonuna basılmadan önce kumandaya göndermeye başlayınız. "DNC Prog Found (DNC Programı Bulundu)" mesajı görüntülendiğinde, Cycle Start'a (Çevrim Başlatma) basınız.

DNC Notları

DNC'de bir program çalışıyorken modları değiştirilemez. Bu nedenle, Background Edit (Arka Plan Düzenleme) gibi düzenleme özellikleri mevcut değildir.

DNC, Drip Mode'u (Damlatma Modu) destekler. Kumanda bir seferde bir blok (komut) gerçekleştirecektir. Her bir blok, blok önden okuması olmadan anında gerçekleştirecektir. Bunun tek istisnası Cutter Compensation (Kesici Telafisi) komutu girildiğindedir. Cutter Compensation (Kesici Telafisi), kompanze edilen bir blok gerçekleştirilmeden önce üç adet blok hareket komutunun okunmuş olmasını gerektirir.

Eksenlerin koordinatlarını kumanda eden bilgisayara çıktı olarak göndermek için, G102 komutunu veya DPRNT kullanarak, DNC esnasında ful-dubleks (iki taraflı kesintisiz) iletişim mümkündür.

GELIŞMIŞ TCP/IP

Ağ iletişimleri kurmak için, CNC kumandasının ağ ayarlarına ağınızın belirli değerlerini girin (bu kılavuzun Ayarlar bölümündeki 900-916 ayarlarına başvurun). Kumanda ve ağ sisteminizin tüm ayarlarını güncellediğinizde F1 tuşuna basın, bu ağı başlatacaktır.

900 ve 907 ağ adları ayarları için sadece harfleri (A-Z büyük/küçük harf duyarlı), haneler (0-9), tireler (-) ve noktalar kullanın).

Ağ Bağlantısı Sorun Giderme

En genel hatalar hatalı kullanıcı adı veya parola, hatalı izinler veya süresi dolan paroladan kaynaklanır.

AĞ PAYLAŞIMI (NET SHARE) sekmesini erişiliyorsa ve "AĞA BAĞLANILAMIYOR (COULD NOT CONNECT TO NETWORK)" görüntülenirse, ek sorun giderme bilgileri sabit disk sürücüdeki ADMIN klasöründe bulunan "error.log" dosyasında mevcuttur (bu dosya FNC'de görüntülenebilir). Sabit disk sürücüde ADMIN klasörü mevcut değilse; oluşturun ve sonra kayıt dosyasını oluşturmak için uzak paylaşıma erişimi yeniden deneyin.

Donanım Kontrolü

Yazılım güncellenmişse ve Ethernet donanım sürümünü kontrol etmek istiyorsanız; makineyi açın ve List/ Prog menüsünden HAZIR DEĞİL (NOT READY) mesajı yok olanana kadar bekleyin. PARAM/DGNOS tuşuna iki defa basın, sonda SAYFA AŞAĞI (PAGE DOWN) tuşuna basın. Sayfanın altındaki FV sürümüdür; 12.001 veya daha yüksek olmalıdır.

Microsoft Ağ Yönetimi

Dosya servis bilgisayarının başka bir bilgisayardan ağ üzerinde görülebildiğini Ağ Komşuları (Network Neighborhood) seçeneğinde doğrulayın. Ağ Komşularındaki sunucu adı ikonuna çift tıklayın. O bilgisayar adının klasörünün CNC'de görüldüğünü doğrulayın (Klasör adı Ayar 139'a girilen ad olmalıdır). Dosya servis bilgisayarının bu klasör için ayrıcalıklarının paylaşıldığını doğrulayın. (Salt Okunur (READ ONLY) değil; tipik olarak varsayılandır).

Ağ bağlantısının çalıştığını doğrulayın (sadece TCP/IP ağlarında kullanılabilir) DHCP'i Kapalı (OFF) konuma çevirin.

Statik IP adresi-Ayar 902 ve Alt Ağ Maskesi-Ayar 903'ü girin ve F1'e basın. Ağ üzerindeki bir bilgisayara gidin. DOS'a gidin (Örn., MS DOS Komut Yanıtı) ve DOS yanıt bölümüne "Ping" ve Ayar 902'de girilen bilgilerin aynısını girin.

Örnek: C:>PING 192.168.1.2

Çeşitli veri süreleri görüntülenecektir. Ağ zaman aşımı hatası meydana gelirse, ayarları doğrulayın ve veri kablosunu (kablolarını) kontrol edin.

FADAL PROGRAM DÖNÜŞTÜRÜCÜ

Giriş

Fadal Program Dönüştürücü Fadal kodu hızlı bir şekilde Haas programına dönüştürür.

Dönüştürücünün Kullanımı

1. LIST PROG menüsünden dönüştürücüye erişin. Fadal programı seçin ve F1 veya YARDIM/HESAPL. tuşuna basın. Açılır menüden "FADALI YÜKLE (LOAD FADAL)" seçeneğini seçin.

2. Dönüştürülen program belleğe yüklenir. Dönüştürülen programın bir kopyası ayrıca ".out" uzantısı ile seçilen I/O cihazına kaydedilir. Dönüştürülmüş bir program olduğunu doğrulamak için programın üst bölümünde "(Dönüştürülmüş Fadal Program (Converted Fadal Program))" bulunacaktır. Dönüştürülemeyen herhangi bir satır bir M199 ile bildirilir ve bu program çalıştırıldığında Kullanıcı Tarafından Oluşturulan Alarma neden olacaktır. Bu satırları inceleyin ve Haas uyumluluğu için değiştirin.

İPUCU: Düzenleme modundaki arama fonksiyonunu kullanarak dönüştürülmemiş satırları hızlı bir şekilde bulabilirsiniz. Dönüştürülmüş program aktif bölümde iken (aktif bölümü değiştirmek için PROG/DÖNŞTR tuşuna basın), F1 veya YARDIM/HESAPL. tuşuna basın ve açılır menüden "Ara (Search)" seçeneğini seçin. Arama terimi olarak M199 kullanın.

MEM	000003	N00000000 NEM	ORY USB DE	VICE HARD DRIVE	NET SHARE USB DEVIC	EZ	
0000008 N10 (N	(Converted Fadal program); 1) (03) (FACE TABLE);	0	URRENT DIRE	CTORY: USB DEVICE			
N20 (N N30 (N N40 (N N50 (N N60 (N	2) (PART NAME:); 3) (X0 Y0 IS); 4) (Z0 IS TOP OF THE PART); 5) (*******TOOLLIST******* 6) (T1=3 " SONNET FACE MILL	. DIA)	1. (USB DE BelayProfil Drawl.DXF FadaProgram FadaProgram	VICE) e. dxf . NC . OUT	48761 1194268 553 931	07-29-2009 1 03-31-1999 1 05-02-2009 1 08-05-2009 0	15: 42 15: 12 13: 11 19: 44
; N70 (N ; N80 (N 3. DIA) N100 (S4000 N110 (N120 (N130 (N140 (N150)	0 C+****END OF TOOL LIST*** 8) G90 G80 G40 G17 G00; 9) TL M06 (TL=3 * SONMET FAC 10) G154 P14 G00 X10.5 Y-7. N03; N10) G154 P14 G00 X10.5 Y-7. N13; N11) G43 H01 Z1. M08; N13; N13; G1 Z0. F30.; N13; G1 Z0. F30.; N14; X10.5; N15; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y7.5; N16; Y8.1;	TE HILL 5	LATHE PART. sign.dxf unicodetest	DXF	957499 157120 13173	06-01-2006 (11-16-2007) 07-28-2009)	99:41 17:46 16:51
1210 (1220 (N21) X8.1 ; N22) Y-5.1 ;	7	FILES		EMPTY FILE SEL	ECTION	
N230 (N240 (N250 (N260 (N23) X5.7 Y-2.7 ; N24) X-5.7 ; N25) Y2.7 ; N26) X5.7 ;		: FILES IN : ACTIVE PI	SELECTION LOGRAM (000003)	Use CURSOR keys t and CANCEL to go Press HELP for He	to navigate 1 back to devi 10 listing.	isting ces.
1 99 (N	008686 NOT SUPPORTED: P.01)	N00	0000210	USER GENERAT	ED ALARM		
70 (N	4934) M97 L1 P9330 ; 4936) G80 ; 4938) M05 :			NOT SUPPORTE	D: P.01		
90 (1							

Program Geliştirici

Bu özellik operatörün program çalışırken program içindeki iş mili hızını ve eksen beslemesini ve soğutma sıvısı (P-cool) konumlarını atlamasını sağlar. Program bittiğinde, değiştirilen program satırları seçilir ve kalıcı olarak değiştirilebilir veya orijinal değerlere geri döndürülebilir.

Ayrıca operatör giriş satırına bir açıklama yazarak ve giriş (enter) tuşuna basarak notları kaydedebilir.

Çalıştırma

Program çalışırken, operatör notlar yazabilir, iş mili devrini, eksen beslemelerini ve P-cool konumlarını ayarlayabilir. Bir programın sonunda (Bellek [MEM] modunda) Program Geliştiricisi ekranına gitmek için F4 tuşuna basın.

Atlamalar ve açıklamalar içerisinde gezinmek için sağ/sol ve yukarı/aşağı ok, sayfa yukarı/sayfa aşağı ve home/end tuşlarını kullanın. Düzenlenecek olanın üzerinde Gir (Enter) tuşuna basın ve o kolon için seçimlerle bir açılır pencere görüntülenecektir (bkz. şekil). Programlayıcı menüdeki komutları kullanarak bir dizi değişiklik yapabilir.

Ayrıca kodun bir bölümü seçilebilir (seçim başlangıcına imleçle gidin, F2 tuşuna basın, seçimin sonuna gidin ve F2 tuşuna basın). Program Geliştiricisine geri gidin (Düzenle (Edit) tuşuna basın) ve gir (enter) tuşuna basın, bu operatörün seçili bölümdeki tüm beslemeleri veya hızları değiştirmesini sağlar.

MAKINE VERISI TOPLAMA

Makine Verisi Toplama, RS-232 portundan gönderilen bir Q komutu kullanılarak (veya opsiyonel bir donanım paketi kullanarak) kullanıcının kontrolden bilgi almasına olanak veren Ayar 143 tarafından etkinleştirilir. Bu özellik yazılım tabanlıdır ve kumandadan gelen verileri talep etmek, yorumlamak ve kaydetmek için ek bir bilgisayar gerektirir. Bazı Makro değişkenleri de uzak bir bilgisayar tarafından ayarlanabilir.

RS-232 Portunu kullanarak Veri Toplama

Ayar Kontrol 143 Açık olduğu zaman kontrol yalnızca bir Q komutuna cevap verir. Aşağıdaki çıktı formatı kullanılır:

<STX> <CSV response> <ETB> <CR/LF> <0x3E>

STX (0x02) veri başlangıcını işaretler. Bu kontrol karakteri uzak bilgisayar içindir.

CSV Virgülle Bölünmüş Değişkenler (Comma Separated Variables), virgülle ayrılmış bir veya daha çok veri değişkeni anlamına gelir.

ETB (0x17) verinin sonudur. Bu kontrol karakteri uzak bilgisayar içindir.

CR/LF uzak bilgisayar veri kesiminin tamamlandığını ve bir sonraki satıra geçilmesini bildirir.

0x3E " > " iletisini görüntüler.

Kontrol meşgulse, "Status, Busy (Durum, Meşgul)" çıktısını verir. Bir talebin tanınmaması halinde kontrol "Unkown (Bilinmeyen)" çıktısını ve yeni bir ">" iletisini verir. Aşağıdaki komutlar kullanılabilir:

Q100 - Makine Seri Numarası	Q301 - Hareket Zamanı (toplam)
>Q100	>Q301
YAZILIM, VER M16.01	C.S. TIME, 00003:02:57
Q101 - Kumanda Yazılım Versiyonu	Q303 - Son Çevrim Zamanı
>Q101	>Q303
YAZILIM, VER M16.01	SON ÇEVRİM, 000:00:00
Q102 - Makine Model Numarası	Q304 - Önceki Çevrim Zamanı
>Q102	>Q304
MODEL, VF2D	ÖNCEKİ ÇEVRİM, 000:00:00
Q104 - Mod (LIST PROG, MDI, vb.)	Q402 - M30 Parça Sayacı #1 (kumandada sıfırlanabilir)
>Q104	>Q402
MOD, (MEM)	M30 #1, 553
Q200 - Takım Değiştirmeler (toplam)	Q403 - M30 Parça Sayacı #2 (kumandada sıfırlanabilir)
>Q200	>Q403
TAKIM DEĞİŞTİRMELER, 23	M30 #2, 553
Q201 - Kullanımdaki Takım Sayısı	Q500 - Three-in-one (PROGRAM, Oxxxxx, STATUS, PARTS, xxxxx)
>Q201	>Q500
KULLANILAN TAKIM, 1	DURUM, MEŞGUL
Q300 - Güç Açık Zamanı (toplam)	Q600 Makro veya sistem değişkeni
>Q300	>Q600 801
P.O. TIME, 00027:50:59	ACRO, 801, 333.339996

Kullanıcı Q600 komutu kullanarak herhangi bir makro veya sistem değişkeninin içeriğini talep etme yeteneğine sahiptir, örneğin, "Q600 xxxx". Bu, makro değişkeninin xxxx içeriğini uzak bilgisayarda görüntüleyecektir. Buna ek olarak, #1-33, 100-199, 500-699, 800-999 ve #2001 ila #2800 arasındaki makro değişkenleri bir "E" komutu kullanılarak "yazılabilir", örneğin "Exxxx yyyyyyyyyy" burada xxxx makro değişkeni ve yyyyyyyyyyyyyyyy yeni değerdir. Bu komutun ancak herhangi bir alarm olmadığında kullanılabileceğini unutmayın.

Opsiyonel Donanım Kullanarak Veri Toplama

Bu yöntem makine durumunu uzak bir bilgisayara sağlamak için kullanılır ve bir 8 Yedek M-kodu röle kartının (8'inin hepsi aşağı fonksiyonlara atanır ve normal M kodu işlemleri için kullanılamazlar), bir güç açma rölesinin, ekstra bir Acil Durdurma kontakları setinin ve bir özel kablo setinin yerleştirilmesi ile etkinleştirilir. Bu parçaların fiyat bilgileri için satıcınıza başvurun.

40 ila 47 arasındaki çıkış röleleri, bir güç açma rölesi ve Acil Durdurma anahtarı yüklendiklerinde kumandanın durumu ile haberleşmek için kullanılır. Parametre 315 bit 26 "Status Relays" etkinleştirilmelidir. Standart yedek M-kodları hala kullanılabilir.

Aşağıdaki makine durumları mevcut olacaktır:

* E-STOP (Acil Durdurma) temasları. E-STOP butonuna basıldığında bu kapatılacaktır.

* Power ON (Güç Açma) - 115 VAC. Kumandanın AÇIK olduğunu gösterir. Arayüz için bir 115 VAC bobin rölesine bağlanmalıdır.

- * Spare Output Relay (Yedek Çıktı Rölesi) 40. Kumandanın Çevrim İçi (çalışıyor) olduğunu gösterir.
- * Spare Output Relay (Yedek Çıktı Rölesi) 41 ve 42:
 - 11 = MEM mode & no alarms (Hafiza modu & alarm yok) (OTOM. mod.)
 - 10 = MDI mode & no alarms (MDI modu & alarm yok) (Manuel mod.)
 - 01 = Single Block mode (Tek Satır modu)
 - 00 = other modes (diğer modlar) (sıfır, DNC, elle kumanda, prog listeleme, vs.)
- * Spare Output Relay (Yedek Çıktı Rölesi) 43 ve 44:
 - 11 = Feed Hold stop (Besleme Bekletme.)
 - 10 = M00 veya M01 stop
 - 01 = M02 veya M30 stop (Program Durdurma)
 - 00 = yukarıdakilerden hiçbiri (tek satır durdurma veya RESET (Sıfırlama).)
- * Spare Output Relay (Yedek Çıkış Rölesi) 45 İlerleme Hızı Atlama aktiftir (İlerleme Hızı %100 DEĞİLDİR)
- * Spare Output Relay (Yedek Çıkış Rölesi) 46 İş Mili Hızı Atlama aktiftir ve (İş Mili Hızı %100 DEĞİLDİR)
- * Spare Output Relay (Yedek Çıkış Rölesi) 47 Kumanda EDIT (Düzenleme) modundadır

Parça Kurulumu

Parçayı tablaya tam anlamıyla bağlamak gerekmektedir. Mengeneler, aynalar kullanarak veya T-cıvatalar ve pabuç kelepçeler kullanarak bağlama birkaç şekilde yapılabilir.

TAKIMLAR

Takım Fonksiyonları (Tnn)

Tnn kodu, takım değiştiriciden iş miline yerleştirilecek bir sonraki takımı seçmek için kullanılır. T T adresi takım değiştirme işlemini başlatmaz; sadece bir sonraki kullanılacak takımı seçer. M06 bir takım değiştirme işlemini başlatacaktır, örneğin T1M06 takım 1'i iş miline yerleştirecektir.

Not: Takım değiştirme işlemini gerçekleştirmeden önce bir X veya Y hareketi gerekli değildir, ancak, eğer iş parçası veya fikstür büyük ise, takımlar ve parça veya fikstür arasında bir çarpışma olmasını önlemek amacıyla bir takım değişiminden önce X veya Y'yi koyulması gerekebilir.

X, Y ve Z eksenleri herhangi bir konumda iken bir takım değiştirme komutu verilebilir. Kontrol Z eksenini makine sıfırına kadar yükseltecektir. Takım değiştirme sırasında kontrol Z eksenini makine sıfırının üzerindeki bir konuma getirecektir ancak hiç bir zaman makine sıfırının altına getirmeyecektir. Bir takım değiştirme işleminin sonunda, Z ekseni makinenin sıfır konumunda olacaktır.

Takım Tutucular

Haas frezeleri için bazı farklı iş mili seçenekleri mevcuttur. Bu tiplerin her biri belirli bir takım tutucu gerektir. En yaygın iş milleri No.40 ve No.50 mors konikleridir. 40 mors konikli iş milleri iki tipe ayrılırlar, BT ve CT; bunlar BT40 ve CT40 olarak adlandırılırlar. İş mili ve takım değiştirici yalnızca bir tipi tutma kabiliyetine sahiptir.

Çektirme Civatası

Takım tutucuyu iş milinin içine tespit emek için bir çektirme civatası veya tespit topuzu gereklidir. Çektirme civataları takım tutucunun üstüne vidalanır ve iş mili tipine özgüdürler. Aşağıdaki çizelge Haas frezede kullanılan çektirme civatalarını tanımlamaktadır. Keskin dik açılı (90-derece) kafa ile kısa mil yada çektirme civatalarını kullanmayın; bunlar iş görmeyeceklerdirve iş miline ciddi hasar verirler.

Takım Tutucu Grubu

Takım tutucular ve çektirme civataları iyi durumda olmalı ve birbirlerine anahtarla sıkılmalıdır, yoksa iş mili içinde sıkışabilirler. Takım tutucu gövdesini (iş mili içine giren kısım) hafifçe yağlanmış bir bezle ince bir paslanmayı önleyici yağ tabakası oluşturacak şekilde temizleyin.

Takım imalatçısının verdiği talimatlara uyarak bir takımı takım tutucunun içine yerleştirin.

Takım Değiştirici

Haas frezeleri için iki tip takım değiştirici vardır; bunlar yana monteli takım değiştirici ile şemsiye biçimli olandır. İki tipe de aynı şekilde komut verilir, ancak her biri farklı şekilde kurulur.

Takımları yüklemeden önce freze makine sıfır konumuna gitmiş olmalıdır (yol verme yeniden başlatma butonu), bunun makineye enerji verildiğinde yapılmış olması gerekir.

Takım bırakma butonu ve ATC FWD ile ATC REV butonları kullanılarak takım değiştirici elle çalıştırılır. İki adet takım bırakma butonu vardır; bir tanesi iş mili kafası kapağının yan tarafında ve ikincisi klavye üzerindedir.

Takım Değiştiricinin Yüklenmesi

DİKKAT! Maksimum takım değiştirici teknik özelliklerini aşmayın. Aşırı ağır takımların ağırlığı eşit olarak dağıtılmalıdır. Yani, ağır takımlar birbirleriyle karşılıklı yerleştirilmelidirler, yan yana değil. Takım değiştirici içindeki takımlar arasında yeterli boşluk olmasını sağlayın; 20-cepli için boşluk mesafesi 3.6 inçtir.

NOT: Hava basıncının düşük veya havanın yetersiz olması takım ayırma pistonuna yeterli basınç uygulanamaması ve takım değiştirme zamanının uzamasına veya hiç yapılamamasına yol açar.

DİKKAT! Makinenin enerjisi açılırken, kapatılırken ve bir takım değiştirme işlemi sırasında takım değiştiriciden uzak durun.

Takımlar, daima önce takım iş miline yerleştirilerek takım değiştiriciye yüklenirler. Bir takımı hiç bir zaman doğrudan takım değiştiriciye yüklemeyin.

DİKKAT! Ayrılırken şiddetli darbe sesi çıkartan takımların bir sorunu var demektir ve takım değiştiriciye bir hasar gelmeden kontrol edilmelidir.

Yana Monteli Takım Değiştirici için Takım Yüklemesi

NOT: 40-konikli makinelerde normal boy bir takımın çapı 3 içten azdır, 50-konikli makinelerde ise 4 inçten azdır. Bu ölçülerden büyük olan takımlar büyük boy olarak kabul edilirler.

1. Yüklenen takımların freze için doğru çektirme civatası tipine sahip olduklarından emin olun.

2. CURNT COMDS butonuna basın. Yeniden yapılan bir Power Up/Restart (Enerji Verme/Yeniden Başlatma) işleminden sonra Tool Pocket Table (Takım Cep Tablosu) ekranına erişmek için bir kez Page Up tuşuna basın. Normal bir çalışma durumundan sonra, Takım Cep Tablosuna gelene kadar Page Up/Down (Sonraki/Önceki Sayfa) tuşlarına basın.

3. Mevcut olan bütün "Large" ("Büyük") veya "Heavy" ("Ağır") takım atamalarını temizleyin. Yanında bir "L" veya "H" olan takım ceplerine gitmek üzere ok tuşlarını kullanın. Boşluk tuşuna bastıktan sonra Write/Enter tuşuna basarak "Large" ("Büyük") veya "Heavy" ("Ağır") takım atamalarını temizleyin. Tüm atamaları temizlemek için ayrıca 3'e ve ardından Origin (Orijin) tuşuna da basılabilir.

Etrafındaki cepler boş olan büyük (ve ağır) takım

Ağır Takım (büyük değil)

4. Takım Cep Tablosunu varsayılan değerlere sıfırlamak için Origin (Orijin) tuşuna basın. Bu, takım 1'i iş miline, takım 2'yi cep 1'e, takım 3'ü cep 2'ye, vs. yerleştirecektir. Bu, hem önceki Takım Cep Tablosu ayarlarını temizlemek hem de bir sonraki program Takım Cep Tablosunu yeniden numaralandırmak için yapılır. Takım Cep Tablosunu sıfırlamanın diğer bir yolu, 0 (sıfır) yazıp Orijin tuşuna basmaktır, bu bütün değerleri sıfıra ayarlayacaktır.

NOT: Aynı takım numarasını tutan iki farklı takım cebi olamaz. Takım Cep Tablosunda halihazırda görünen bir takım numarasının girilmesi, "Invalid Number" ("Geçersiz Numara") hatası verir.

5. Bir sonraki programın büyük bir takım gerektirip gerektirmeyeceğini belirleyin. 40-konikli makinelerde büyük bir takımın çapı 3 inçten büyüktür, 50-konikli makinelerde ise 4 inçten büyüktür. Büyük takımlar kullanılmadığında Adım 10'a ilerleyin. Büyük takımlar kullanıldığında, bir sonraki adıma ilerleyin.

6. Takımlarınızı CNC programına uyacak şekilde düzenleyin. Büyük takımların sayısal konumlarını tespit edin ve bu cepleri Takım Cep Tablosunda Large (Büyük) olarak belirleyin. Bir takım cebini "Large" ("Büyük") olarak belirlemek için, o cebe gidin ve L, ardından da Write/Enter tuşuna basın.

DİKKAT! Çevreleyen ceplerden birinde veya her ikisinde birden halihazırda takım varsa takım değiştiriciye büyük bir takım yerleştirilemez. Bunun yapılması takım değiştiricinin çarpmasına neden olacaktır. Büyük takımların etrafındaki cepler boş olmalıdır. Bununla beraber, büyük takımlar bitişik boş ceplerde yer alabilirler.

7. Gerekli olan bütün Büyük ve Ağır takım ceplerini belirlediğinizde, Takım Cep Tablosunu yeniden numaralandırmak için Orijin tuşuna basın. Bu noktada, makine takım 1'i iş miline almaya hazırdır.

8. Takım 1'i elinize alın ve takımı (çektirme cıvatası önde) iş miline takın. Takım tutucudaki iki yarık, iş milinin çıkıntılarını karşılayacak şekilde takımı çevirin. Takım Salıverme butonuna basarken takımı yukarı doğru itin. Takım iş miline bağlandığında, Takım Salıverme butonunu bırakın.

- 9. "Next tool" ("Sonraki takım") butonuna basın.
- 10. Adım 9 ve 10'u takımlar yüklenene kadar tekrarlayın.

Yüksek Hızlı Yana Monteli Takım Değiştirici

Yüksek hızlı takım değiştirici ilave bir takım atamasına sahiptir, bu "Heavy" ("Ağır")'dır. Ağır takımlar, 4 libreden ağır olan takımlar olarak tanımlanır. Eğer 4 libreden ağır bir takım kullanılırsa, takım tabloya bir "H" ile girilmelidir (Not: Bütün büyük takımlar ağır olarak kabul edilirler). İşlem sırasında takım tablosundaki* bir "h", büyük bir cepteki ağır bir takımı belirtir.

Ağır bir takım değiştiriliyorsa, bir emniyet önlemi olarak, takım değiştirici normal hızın azami %25'inde çalışacaktır. Cep yukarı/aşağı hızı yavaşlatılmaz. Takım değiştirme tamamlanınca, hız kontrol tarafından geçerli hızlıya geri alınacaktır. Alışılmadık veya aşırı boyutlu takımlar değiştirilirken sorunlarla karşılaşılırsa, yardım için satıcınıza başvurun.

H - Ağır, ancak büyük olması gerekli değil (büyük takımlar her iki taraflarında boş cep gerektirir).

L - Her iki tarafta boş cepler gerekir (geniş takımlar ağır olarak kabul edilir).

h - Büyük bir takım olarak atanmış bir cepteki ağır küçük çaplı takım (her iki tarafında boş cepler bulunmalıdır). Küçük harf "h" ve "l" kontrol tarafından yerleştirilir; takım tablosuna küçük harf "h" veya "l"yı hiç bir zaman girmeyin.

I - İş milindeki büyük bir takım için ayrılmış bir cepteki küçük çaplı takım.

Büyük takımlar ağır olarak kabul edilir.

Ağır takımlar büyük olarak kabul edilmezler.

Yüksek hızlı olmayan takım değiştiricilerde, "H" ve "h"'nin bir etkisi yoktur.

Bir Takım Ataması için 0 kullanılması

Bir takım numarasının yerine, bir 0 (sıfır rakamı) takım tablosuna konulabilir. Bu yapılırsa, takım değiştirici bu cebi "görmez" ve bir takımı "0" atanmış olan ceplere koymaya veya oradan almaya hiç teşebbüs etmez.

Tüm cepleri sıfırlamak için 0 ve ardından Origin girin, cepleri sıralamak için 1 ve ardından Origin girin ve tüm H,h,L,l girdilerini silmek için 3 ve ardından Origin girin. İş miline takılmış olan bir takımı belirtmek için bir 0 kullanılamaz. İş miline her zaman bir takım numarası atanmalıdır.

Bir cebi "daima boş" cep olarak belirlemek için: Ok tuşlarını kullanarak boş olacak cebe gidin ve seçin, nümerik tuş takımındaki 0 tuşuna basın ve ardından Enter tuşuna basın.

Takımların Karuzelde Gezdirilmesi

Takımların karuzelde hareket etmesi gerektiğinde, aşağıdaki adımları izleyin.

DİKKAT! Takımların karuzelde yeniden düzenlenmesini önceden planlayın. Olası takım değiştirici çarpmalarını azaltmak için takım hareketlerini an aza indirin. Takım değiştiricide halihazırda büyük ve ağır takımlar varsa, bunları yalnızca o şekilde atanmış takım cepleri arasında taşıdığından emin olun.

Büyük Boy bir Takım için Yer Açılması

Betimlenen takım değiştirici normal boy takımların bir derlemesine sahiptir. Bu örneği vermek amacıyla, cep 12'ye yerleştirilecek büyük boy bir takım için yer açmak üzere, takım 12 cep 18'e taşınacaktır.

1. MDI modunu seçin. CURNT COMDS butonuna basın. Takım Cep Tablosu ekranına gelene kadar Page Up/ Down (gerekiyorsa) tuşlarına basın. Hangi takım numarasının cep 12'de olduğunu doğrulayın.

2. Kontrole Tnngirin (burada Tnn adım 1'deki takım numarasıdır). ATC FWD'ye basın. Bu, cep 12'deki takımı iş miline yerleştirecektir.

3. Kumandaya P18 girin, ardından halen iş milinde bulunan takımı cep 18'in içine yerleştirmek için ATC FWD'ye basın.

4. Takım Cep Tablosunda Cep 12'ye gidin ve bu cebi büyük olarak atamak için L, Write/Enter tuşlarına basın.

5. Takım Cep Tablosunda SPNDL (iş mili) seçeneğine takım numarasını girin. Takımı iş miline takın.

NOT: Aynı takım numarasını tutan iki farklı takım cebi olamaz. Takım Cep Tablosunda halihazırda görünen bir takım numarasının girilmesi, "Invalid Number" ("Geçersiz Numara") hatası verir.

6. Kontrole P12 girin ve ATC FWD'ye basın. Takım cep 12'ye yerleştirilecektir.

NOT: Ekstra büyük takımlar da programlanabilirler. "Ekstra büyük" takım üç cepi yukarı kaldıran takımdır; takımın çapı içine takılı olduğu cepin iki tarafından birindan takım cebini kavrayacaktır. Bu boyutta bir takım gerekli ise, paramatre 315'in bit 3'ünü 1'e değiştirin. Takım tablosu ekstra büyük takımlar arasında iki boş cep gerekli olduğu için güncelleştirilmelidir.

Şemsiye Takım Değiştirici

Tool Loading (Takım Yükleme) Takımları, önce takım iş miline yüklenerek şemsiye takım değiştiriciye yüklenirler. Bir takımı iş miline yerleştirmek için takımı hazırlayın ve daha sonra aşağıdaki adımları izleyin:

1. Yüklenen takımların freze için doğru çektirme civatası tipine sahip olduklarından emin olun.

- 2. MDI moduna girin.
- 3. Takımlarınızı CNC programına uyacak şekilde düzenleyin.

4. Takım 1'i elinize alın ve takımı (çektirme cıvatası önde) iş miline takın. Takım tutucudaki iki yarık, iş milinin çıkıntılarını karşılayacak şekilde takımı çevirin. Takım Salıverme butonuna basarken takımı yukarı doğru itin. Takım iş miline bağlandığında, Takım Salıverme butonunu bırakın.

5. "ATC FWD" (ATC İLERİ) tuşuna basın.

6. Adım 4 ve 5'i takımlar yüklenene kadar kalan tüm takımlar için tekrarlayın.

Şemsiye Takım Değiştirici Kurtarma

Takım değiştirici sıkışırsa, kontrol otomatik olarak alarm konumuna geçecektir. Bunu düzeltmek için, Emergency Stop (Acil Durdurma) düğmesine basarak şıkışma nedenini giderin. Alarmları silmek için RESET tuşuna basın. Takım değiştiriciyi sıfırlamak için "Recover (Kurtarma)" tuşuna basın ve talimatları izleyin.

DİKKAT! Önce EMERGENCY STOP (ACİL DURDURMA) tuşuna basmadıkça, takım değiştiriciye elinizi yaklaştırmayın.

Yana Monteli Takım Değiştirici Kurtarma

Eğer takım değiştirme sırasında bir sorun meydana geldiyse, takım değiştirici kurtarma yapılmalıdır. Recover (Kurtarma) tuşuna basarak takım değiştirici kurtarma moduna girin. Takım değiştirici kurtarma moduna girildiğinde, düzgün bir takım değiştirici kurtarma yapmak üzere talimatlar verilir ve sorular sorulur. Çıkmadan önce takım değiştirici kurtarma işlemi tam olarak yapılmalıdır. Rutinde zamanından önce çıkıldığında, takım değiştirici kurtarmaya baştan başlanması gerekir.

Yana Monteli Takım Değiştirici Kapı ve Anahtar Paneli (mevcutsa)

MDC, EC-300 ve EC-400 gibi frezeler takım yüklemesine yardımcı olmak için bir alt panele sahiptir. Otomatik takım değiştirici işlemi için "Manual/Auto" (Elle/Otomatik) anahtarı "Auto"'ya alınmalıdır. Eğer anahtar "Manual (Manüel)" konumunda ise, CW (saat yönü) ve CCW (saatin ters yönü) olarak tanımlanan diğer iki buton etkindir ve otomatik takım değiştirme devre dışıdır. CW (saat yönü) ve CCW (saatin ters yönü) butonları takım değiştiriciyi saat yönünde ve saatin ters yönünde döndürür. Kapı açık olduğunda algılama yapan bir anahtar kapıda mevcuttur.

Çalıştırma

Bir takım değiştirme işlemi yapılırken kafes kapısı açılırsa, kafes kapısı kapatılana kadar takım değiştirme duracaktır ve kafes kapısı kapatılıncaya kadar Bununla birlikte, yürümekte olan frezeleme işlemleri devam edecektir.

Takım değiştirme işlemi yapılırken anahtar "Manual" konuma alınırsa, yürürlükteki takım değiştirme hareketi tamamlanacaktır. Anahtar "Auto" konuma geri alınmadıkça bir sonraki takım değiştirme işlemi yürütülmeyecektir. Yürümekte olan frezeleme işlemleri devam edecektir.

Anahtar "Manual" konumda iken, CW veya CCW butonlarına bir kez basıldığında her seferinde karuzel bir konum dönecektir.

Takım değiştirici kurtarma sırasında, eğer kafes kapısı açıksa veya anahtar "Manual" konumda ise ve Recover (Kurtarma) tuşuna basıldıysa, operatöre kapının açık olduğunu veya manüel modunda bulunulduğunu bildiren bir mesaj görüntülenir. Devam etmek için operatör kapıyı kapatmalı ve anahtarı otomatik konuma almalıdır.

Yana Monteli Takım Değiştirici Kurtarma Akış Şeması

Hidrolik Takım Değiştiricisi Takım Cebi Ayarı

Takım cebi tablosuna Ofset tuşuna ve ardından takım cebi sütununa ulaşana kadar sağ imleç tuşuna basılarak erişilir. Kullanılan her takım için cep değerini girin. Takımların, iş milinin veya takım değiştiricinin hasar görme olasılığını engellemek için bu tablo operatör tarafından doğru şekilde ayarlanmalıdır.

Yeni Bir Takım Tablosunun Oluşturulması

İşleme merkezinin çalıştırılması sırasında takım tablosunun tamamen yeniden programlanması gerekli olacaktır. Yeni bir tablo oluştururken yardımcı olarak kullanılabilecek iki faydalı fonksiyon vardır:

Takım tablosu ekranı üzerinde iken tuş takımı üzerindeki '**ORIGIN** (**ORİJİN**)' düğmesine basılması tüm takım ceplerini kendi varsayılan değerlerine ayarlayacaktır. Örneğin, takım 1 iş mili içinde, takım 2 cep 1 içinde, takım 3 cep 2 içinde ve bunun gibi.

Takım tablosu ekranı üzerinde iken tuş takımı üzerindeki '0' ve daha sonra '**ORIGIN (ORİJİN)**' düğmesine basılması tüm takım ceplerini '0' değerine ayarlayacaktır.

Takım Numaralandırma Sistemi

Makinenin ilk olarak çalıştırılması varsayılan takım cebi tablosunu ayarlar. Tablo her bir cep, cep numarası ile aynı numaralı bir takım içeriyormuş gibi ayarlanır. İş mili Takım 1'i (T1) kapsamak için başlangıç konumuna getirilir. Örneğin, Cep 1 Takım 1'i (T1) kapsamakla görevlendirilir, Cep 2 Takım 2'yi (T2) kapsamakla görevlendirilir, vb. Bu nedenle, ATC 38 yana monteli takım değiştiricisi T1 ile T38 arasında 38 takımlık varsayılana sahiptir (T1 iş milinin içinde olarak).

Takım tablosu içindeki takım numaraları takım değiştiricisinin her bir cebine tahsis edilmiş bir takım numarası atar. Bu numara takımın gerçekte nerede olduğundan bağımsız olarak takım tablosunda kalır. Örneğin, takım 5 (T5) takım cebi 5'den çıkarıldığında ve iş miline yerleştirildiğinde, takım tablosu T5'in iş milinin içinde olduğunu ve cep 5'in takım T5'e tahsis edildiğini gösterecektir.

Tezgahın programından çağırılan bir takım kumandaya takım numarası için takım tablosunda arama yapma komutu verir ve takım değiştiricisini takım numarasını içeren cebe endeksler.

DİKKAT! Programda çağırılan takım, takım tablosunda listelenmemiş ve/veya ilgili cebin içine yüklenmemiş olması halinde makine ve/veya takımda hasar meydana gelebilir.

Kabul Edilebilir Takım Numaraları

Genellikle takım numaraları T1'den takım değiştiricisi zincirindeki cep sayısına kadardır (30 cepli takım değiştirici üzerinde T38), bununla birlikte, takım tablosundaki tüm numaraların kullanılması da mümkündür. Bu, operatörün talaşlı işlemi tamamlaması için mevcut olan takım ceplerinden daha fazlasına ihtiyaç duyduğu durum için yapılır. Örneğin, diyelim ki tam bir talaşlı işleme işini gerçekleştirmek için 55 farklı takım gerekiyor. İlk 38 takım kullanılacaktır ve daha sonra operatör orijinal takımlardan 17'sini çıkarırken ve işi tamamlamak için gerekli olan 17 takım ile değiştirirken makine durdurulacaktır. T39 ile T55 arasındaki takım numaralarını kullanarak karşılık gelen ceplerindeki yeni takımları aktarmak için takım tablosunu güncelleştirdikten sonra talaşlı işlem sürdürülmeye hazır hale gelir.

Bir Takım Ataması için '0' Değerinin Kullanılması

Bir takım cebi takım tablosundaki takım numarası için "0" (sıfır) girilerek "always empty (daima boş)" cep olarak belirlenebilir. Bu yapılırsa, takım değiştirici bu cebi "görmez" ve bir takımı "0" atanmış olan ceplere koymaya veya oradan almaya hiç teşebbüs etmez.

İş miline takılmış olan bir takımı belirtmek için sıfır kullanılamaz. İş miline her zaman bir takım numarası atanmalıdır.

"Large (Geniş)" Takım Atamalarının Kullanılması

Takım değiştirici büyük boyutlu takımları ancak bitişik cepler boş bırakılmışsa ve takım tablosuna bir atayıcı eklenmişse kabul edebilir. Geniş boyutlu (büyük) takımlar 4.9" den (125mm) daha büyük çapa sahip olan takımlardır.

Geniş bir takımı atamak için, belirli cebi seçmek için kaydırın (büyük takımı tutanı) ve "L"ye ve daha sonra 'WRITE/ENTER (Yaz/Gir)' düğmesine basın. Bu cebin yanında ekran üzerinde "L" harfi görülecektir ve her iki taraf üzerindeki takım numaraları "-" olarak değişecektir, bu takımların bu ceplere takılamayacağını gösterir.

'L' atamasını kaldırmak için, 'L' cebini seçin ve 'SPACE (Boşluk)' tuşuna ve daha sonra 'WRITE/ENTER (Yaz/ Gir)' düğmesine basın.

NOT: Geniş takımlar 9.8"den (250mm) daha büyük olamaz.

Ağır takımlar

Bir takımın "Heavy (Ağır)" olarak atanmasının takım değiştirici hızı veya hareketleri üzerinde hiçbir etkisi olmayacaktır.

Takımların Takılması/Çıkarılması (hidrolik takım değiştirici)

Takımlar takım değiştirici içine doğrudan ceplerin içine sokularak veya iş milinin içine sokularak ve takımları takım değiştirici içine istiflemek için tuş takımı üzerindeki ATC FWD/REV (ATC İleri/Geri) düğmeleri kullanılarak takılır. Başlangıç ayarı sırasında, ATC FWD/REV (ATC İleri/Geri) düğmeleri kullanılarak, iş milinin içine sokulacak ilk takım takım T1 olacaktır ve cep 1 içine yerleştirilecektir.

Doğrudan takım değiştirici zinciri içine takmak için, operatörün alt paneli üzerindeki düğmeyi "Manual (Manüel)" ayarına çevirin, operatör kapısını açın (takım değiştirici kafesinin arkasındadır) ve takımı zincirin içine takın. Zinciri bir sonraki boş cebe hareket ettirmek için CW/CCW (Saat Yönünde/Saat Yönünün Tersine) düğmelerini kullanın. Geniş takımın diğer tarafında boş bir cep bırakmayı unutmayın.

Tüm takımlar yüklendiğinde takım değiştirici takım tablosunu güncelleyin.

Takımlar her bir takım iş miline çağırılarak ve buradan çıkarılarak veya takım kafesindeki operatör istasyonundaki zincirden doğrudan alınarak çıkarılabilir. Takımları zincirden çıkarmak için, düğmeyi "Manual (Manüel)" konumuna çevirin, takım kafesi operatör kapısını açın, takımı kavrayın ve ayak pedalına basın.

ATC FWD (ATC Ileri), ATC REV (ATC Geri) Kullanımı (hidrolik takım değiştirici)

ATC FWD/REV kullanımı takım değiştiricisinin iş mili içindeki takıma göre bir sonraki takım cebine hareket etmesine neden olacaktır. Örneğin, takım T15 iş mili içinde ve cep 20'ye atanmışsa, takım değiştirici takım T15'i cep 20'nin içine koyacaktır ve daha sonra cep 21'e ATC FORWARD (ATC İLERİ) hareketi gerçekleşecektir. **Takım 16'ya (T16) gitmeyecektir.**

ATC FWD/REV (ATC İleri/Geri) düğmeleri iş mili içindeki takımı bir sonraki veya bir önceki takıma değiştirecektir. Bununla birlikte, bir sonraki veya bir önceki takım sıfır atanmış bir cep olduğunda (boş bir cep) takım değiştirici bu cebi atlayacak ve sıfır olmayan bir cepten bir takım alacaktır.

Takım Değiştirici Kurtarma (hidrolik takım değiştirici)

Takım değiştirici kurtarma modu takım değiştiricinin kolunu ve taşıyıcısını kendi HOME (Referans) pozisyonuna hareket ettirmek için kullanılır.

"Recover (Kurtarma)" düğmesine basın ve takım değiştiricisini referans konumuna geri döndürmek için ekran üzerindeki talimatları takip edin.

Sikişan takımlar

Soğuk takım sıcak iş miline konulduğunda takımlar iş mili içine sıkışabilir. Sıkışmış bir takımı çıkarmak için:

İş milinin soğumasını bekleyin ve takımı Takım Salıverme düğmesi ile çıkarmayı deneyin.

Takım hala sıkışmış durumda ise aşağı bakın.

Not: Sıkışmış bir takımı iş milinden çıkarmak için iki kişi gereklidir

Uyarı: Takımlar keskin olduğu ve kırılabileceği için eldivenler ve gözlük takın

Bir elinizle takımı tutun ve takım tutucuya (iş miline değil) bir parça alüminyum veya pirinç ile hafifçe vurun. Diğer parçalar mevcut değilse küçük plastik bir tokmak kullanılabilir. Diğer kişi Takım Salıverme düğmesine basacak ve basılı tutacaktır.

ELLE KUMANDA MODU

Elle Kumanda Modu, eksenlerden her birisini istenilen konuma elle kumanda etmenize olanak sağlar. Eksenlerde elle kumanda hareketi yaptırmadan önce, eksenleri orijine (eksenlerin başlangıç referans noktası) getirmeniz gerekmektedir (MakineyeYol Verme Bölümüne Bakın).

Elle kumanda moduna girmek için elle kumanda kolu butonuna basın, ardından istenilen eksenlerden (örneğin X, Y, Z, A veya B vs.) birine basın ve eksenleri hareket ettirmek için ya elle kumanda kolu butonlarını, yada el kumandasını kullanın. Elle kumanda modunda kullanılabilecek farklı kademede devir hızları vardır; bunlar .0001, .001, .01 ve .1'dir. Opsiyonel Remote Jog Handle (Uzaktan El Kumandası) (RJH) eksenleri elle kumanda etmek için de kullanılabilir.

OFSETLERIN AYARLANMASI

Bir iş parçasını hassas bir şekilde işlemek için, frezenin iş parçasının tabla üzerinde nerede yerleştirildiğini bilmesi gerekir. İş milinde bir işaretçi takım varken, parçanın üst sol köşesine gelene kadar frezeye elle kumanda hareketi yaptırın (aşağıdaki resime bakın), bu konum parça sıfırıdır. Değerler Work Offset (İş Parçası Ofsetleri) sayfasındaki G54'e girilecektir.

Ofsetler, ofsetler sayfalarından birisini seçerek, imleci istenilen sütuna getirerek, bir rakam girerek ve Write (Yaz) veya F1'e basarak elle de girilebilir. F1'e basılması, rakamı seçilen sütuna girecektir. Bir değerin girilmesi ve Write'a (Yaz) basılması, girilen miktarı seçilen sütundaki rakama ekleyecektir.

Tipik İş Parçası Ofseti Ayarı

- 1. Malzemeyi mengeneye bağlayın ve sıkın.
- 2. İş mili içine işaretçi bir takım yerleştirin.
- 3. Elle Kumanda Kolu (A) butonuna basın.
- 4. .1/100 değerine basın. (B) (Kol döndürüldüğünde freze hızlı bir şekilde hareket edecektir).
- 5. +Z (C)'ye basın.
- 6. Z-eksenini yaklaşık olarak elle kumanda (D) edin. Parçanın 1 inç yukarısına.
- 7. .001/1'e basın. (E) (Kol döndürüldüğünde freze yavaş bir hızda hareket edecektir).
- 8. Z-eksenini yaklaşık olarak elle kumanda (D) edin. Parçanın 0.2 inç yukarısına.

9. X ve Y eksenlerinden birini seçin (F) ve takımı elle kumanda kolu hareketi (D) ile parçanın üst sol köşesine getirin (Aşağıdaki resime bakın).

- 10. İş Sıfırlama Ofseti Bölmesi etkinleşene kadar Ofset (G) tuşuna basın.
- 11. İmleci (I) G54 Kolonu X'e getirin.

12. Değeri X-ekseni sütununa yüklemek için Part Zero Set (Parça Sıfır Ayarı) tuşuna (J) basın. Part Zero Set'e (J) ikinci defa basılması değeri Y-ekseni sütununa yükleyecektir.

UYARI! Part Zero Set (Parça Sıfır Ayarı) tuşuna üçüncü bir defa basmayın; bunun yapılması Z-eksenine bir değer yükleyecektir. Program çalıştırıldığında bu bir çarpmaya veya Z-ekseni alarmına yol açacaktır.

İş mili ön tarafın sol üstünde

Takım Ofsetini Ayarlama

Bir sonraki basamak ise takımları başlatmaktır. Bunun yapılması, takımın uç kısmından parçanın üst kısmına olan mesafeyi belirler. Bunun başka bir adı, bir program kodu satırında H olarak gösterilen Takım Boyu Ofsetidir; herbir takım için mesafe Tool Offset Table (Takım Ofset Tablosu)'na girilir.

- 1. İş mili içine takımı yerleştirin.
- 2. Elle Kumanda Kolu (A) butonuna basın.
- 3. .1/100'e basın. (B) (Kol döndürüldüğünde freze hızlı bir şekilde hareket edecektir).

4. X ve Y eksenlerinden birini seçin (C) ve takımı elle kumanda kolu hareketi (D) ile parçanın merkezine yaklaştırın.

- 5. +Z (E)'ye basın.
- 6. Z-eksenini parçanın yaklaşık 1 inç yukarısına elle kumanda (D) edin.
- 7. .0001/.1'e basın (F) (Kol döndürüldüğünde freze yavaş bir hızda hareket edecektir).

8. Takım ile iş parçası arasına bir kağıt sayfası yerleştirin. Takımı dikkatlice, mümkün olduğunca yakına parçanın üstüne aşağı doğru hareket ettiriniz ve kağıdın hala hareket ettirilebildiğinden emin olunuz.

9. Ofset'e basın (G).

10. "Coolant - Length - Radius (Soğutma Sıvısı - Uzunluk - Yarıçap)" sayfası tepede olana kadar Page Up'a (H) basın ve takım No.1'e gidin.

- 11. İmleci (I) konum No.1 için Geometry (Geometri)'ye getirin.
- 12. Tool Ofset Mesur (Takım Ofset Ölçümü)'ne basın (J).

Bu, ekranın sol alt kısmında bulunan Z konumunu alacak ve bunu takım numarası konumuna yerleştirecektir.

DİKKAT! Sonraki adım iş milinin Z ekseninde hızlı bir şekilde hareket etmesine neden olacaktır.

13. "Next tool" ("Sonraki Takım") butonuna basın (K).

İlave Takım İşlemleri Ayarı

Current Commands'de (Mevcut Komutlar) diğer takım ayar sayfaları mevcuttur. Curnt Comds tuşuna basınız ve ardından bu sayfalara atlamak için Page Up/Down (Önceki/Sonraki Sayfa) butonlarını kullanınız.

İlki, sayfanın üst kısmında "Spindle Load (İş Mili Yükü)" ve "Vibration (Titreşim)" olan sayfadır. Programcı, iş mili yükü ve titreşimi için bir takım yük sınırlaması ekleyebilir. Kontrol bu değerleri referans alacak ve sınırlamalara ulaşılırsa, belirli bir hareket tarzını icra etmek üzere ayarlanabilecektir (Bakınız ayar 84).

İkinci sayfa Tool Life (Takım Ömrü) sayfasıdır. Bu sayfada "Alarm" olarak adlandırılan bir sütun bulunmaktadır. Programcı, bu sütuna, takım girilen değer kadar kullanıldığında makinenin durmasına neden olan bir değer koyabilir.

İleri Takım Yönetimi İşlemi

Takım Yönetimi Giriş

İleri Takım Yönetimi (ATM), aynı işte veya bir dizi işlerde programcının birbirinin aynı iki takımı ayarlamasına ve erişmesini sağlar. ATM sayfası Mevcut Komutlar modunda yer almaktadır (Current Commands (Mevcut Komutlar) butonuna basın ve bir sayfa yukarı gidin). ATM ekranına bir örnek şudur; ekranın başlığında "TOOL GROUP (TAKIM GRUBU)" vardır.

Çift veya yedek takımlar belirli gruplara sınıflandırılırlar. Programcı G-kodu programında, tek bir takım yerine bir grup takımı belirler. ATM her gruptaki takımların kullanımını ayrı ayrı izler ve kullanıcının belirlediği sınırlarla karşılaştırır. Bir sınıra ulaşıldığında (örn. kullanım sayısı veya takım yükü) bir dahaki seferde o takım gerektiğinde freze otomatik olarak grupdaki diğer takımlardan birini seçer.

ATM'yi aktive etmek için, Ayar 7'nin (Parametre kilidi) kapalı olduğundan emin olun ve E-stop (Acil Durdurma) düğmesine basın. Parametre 315, bit 28 altında, değeri "0"dan "1"e değiştirin ve pencereler arasında geçiş yapmak için F4'e basın. Aktif pencerede içinde farklı seçeneklere gitmek için ok tuşlarını (sol, sağ, yukarı, aşağı) kullanın. Enter tuşuna basılarak, seçime bağlı olarak herbir seçenekteki değerler seçilir, değiştirilir veya temizlenir.

Alt sol köşede seçili öğeler için basit yardım bilgileri görüntülenir.

				Aktif Pencere Etiketi
(TOOL DATA)	PRESS F4 TO CH	ANGE ACTIVE WINDOW		Takım Grubu Penceresi
GROUP ID: 1000 CPREVIOUS «NEXT» «ADD» «DELETE» «RENAME» «SEARCH» GROUP USAGE: IN ORDER DESCRIPTION:	USAGE: HOLES: FEED TIME: TOTALTIME: TOOL LOAD:	0 0 0 0 TL ACTION: ALARM		Pencere İzin Verilen Sınırlar
TL IN SPINDLE 1 TOOLS EXP 0 0 0 0 0 0 0 0 0 0	CODE D-CODE	FLUTES		Takım Veri Penceresi
Press WRITE/ENTER to display the previous tool groups data			Y	/ardım Metni

Takım Grubu - Takım Grubu Penceresinde, operatör programlarda kullanılan takım gruplarını belirler.

Önceki – PREVIOUS – <PREVIOUS> seçilmesi ve Enter'a basılması ekranı önceki gruba değiştirir.

Sonraki – <NEXT> seçilmesi ve Enter'a basılması ekranı sonraki gruba değiştirir.

Ekle – <ADD> seçilerek, bir takım grubu eklemek için 1000 ile 2999 arasında bir sayı girin ve Enter'a basın.

Sil – <PREVIOUS (Önceki)> veya <NEXT (Sonraki)> kullanarak silinecek gruba gidin. <DELETE> 'i seçin ve Enter'a basın. Silme işlemini onaylayın; 'Y (E)' ile cevaplamanız silme işlemini yapar; 'N (H)' ile cevaplamanız silme işlemini iptal eder.

Ad Değiştir - <RENAME>'i seçin, 1000 ile 2999 arasında bir sayı girin ve grubun numarasını değiştirmek için Enter'a basın.

Ara - Bir grubu aramak için, <SEARCH> 'ü seçin, bir grup numarası girin ve enter'a basın.

Group Id (Grup Numarası) - Grubun kimlik numarasını görüntüler.

Group Usage (Grup Kullanımı) – Gruptaki takımların çağrılma sıralarını girin. Sol ve sağ ok tuşlarını kullanarak takımların nasıl kullanıldığını seçin.

Description (Tanım) – Takım grubunu tanımlayıcı bir isim girin.

Allowed Limits (İzin Verilen Sınırlar) – Allowed Limits (İzin Verilen Sınırlar) penceresi, bir takımın ne zaman aşınmış olacağını belirlemek üzere kullanıcı tanımlı sınırları içerir. Be değişkenler gruptaki her takımı etkiler. Değişkenlerin sıfıra ayarlanmış olarak bırakılmaları ihmal edilmelerine neden olur.

Feed Time (Kesme Süresi) – Bir takımın kesme pasosunda kullanılacağı toplam süreyi dakika olarak girin.

Total Time (Toplam Süre) – Bir takımın kullanılacağı toplam süreyi dakika olarak girin.

Tool Usage (Takım Kullanımı) - Bir takımın kullanılacağı toplam sayıyı girin (takım değiştirme sayısı).

Holes (Delikler) – Bir takımın delebileceği toplam delik sayısını girin.

Tool Load (Takım Yükü) – Gruptaki takımların için azami takım yükünü (yüzde olarak) girin.

TL Action* (Takım İşlemi) – Azami takım yüklenmesi yüzdesine ulaşıldığında yapılacak otomatik işlemi girin. Sol ve sağ ok tuşlarını kullanarak otomatik işlemi seçin.

Takım Verileri

TL in Spindle – İş milindeki takım.

Tool – Bir takımı bir gruba eklemek veya ondan çıkarmak için kullanılır. Bir takımı eklemek için Tool Data (Takım Verileri) penceresi başlıklandırılana kadar F4'e basın. "Tool (Takım)" başlığı altındaki alanlardan birini seçmek için ok tuşlarını kullanın ve bir takım numarası girin. Sıfır girilmesi takımı siler veya takım numarasının seçilmesi ve ORIGIN'e (ORİJİN) basılması H-Kodunu, D-Kodunu ve Oluklar verilerini varsayılan değerlere sıfırlar.

Exp (Expire) (Süre Sonu) – Gruptaki bir takımı manüel olarak devre dışı bırakmak için kullanılır. Bir takımı devre dışı bırakmak için, bir '*' girin veya devre dışı bırakılmış takımı '*' silmek için enter'a basın.

Life (Ömür) – Bir takımın kalan ömür yüzdesi. Bu, gerçek takım verileri ve grup için operatörün girdiği sınırlar kullanılarak CNC kontrol sistemi tarafından hesaplanır.

CRNT PKT – Seçilen takımın içinde olduğu takım değiştirici cebi.

H-Code – Takım için kullanılacak olan H-kodu (takım boyu). Ayar 15 H ve T Code Agreement (Kod Anlaşması) Off (Kapalı) olmadıkça H-kodu düzenlenemez. Operatör bir sayı girerek ve Enter'a basarak H-kodunu değiştirebilir. Girilen sayı, takım ofsetleri ekranındaki takım numarasına uyacaktır.

D-Code – Takım için kullanılacak D-kodu. Bir sayı girerek ve Enter'a basarak D-kodu değiştirebilir.

NOT: İleri Takım Yönetimindeki H ve D-kodlarının varsayılan değerleri grupta kapsanan takım sayısına eşit olarak ayarlanır.

Flutes (Oluklar) – Takım üzerindeki olukların sayısı. Seçip, yeni bir sayı girerek ve Enter'a basarak bu düzenlenebilir. Bu, takım ofsetleri sayfasında listelenen "Flutes (Oluklar)" sütunun aynısıdır.

Aşağıdaki bölümlerden birinin seçilmesi (Holes (Delikler)'den Load (Yük)'e kadar) ve ORIGIN'e (ORİJİN) basılması değerlerini silecektir. Değerleri değiştirmek için, belirli sınıftaki değeri seçin, yeni bir sayı girin ve enter'a basın.

Load (Yük) – Takıma yüklenen azami yük, yüzde olarak.

Holes (Delikler) – Grup 9 korunmalı çevrimleri kullanarak takımın deldiği / kılavuz çektiği / çap büyülttüğü deliklerin sayısı.

Feed Time (Besleme Süresi) – Bir takımın beslendiği süre, dakika olarak.

Total Time (Toplam Süre) – Bir takımın kullanıldığı toplam süre, dakika olarak.

Usage (Kullanım) - Takımın kullanıldığı sayı.

Takım Grubu Ayarı

Bir takım grubu eklemek için Tool Data (Takım Verileri) penceresi başlıklandırılana kadar F4'e basın. <ADD> (<EKLE>) seçilene kadar ok tuşlarını kullanın. 1000 ile 2999 arasında bir sayı girin (Bu grup kimlik numarası olacaktır). Bir grup kimlik numarasını değiştirmek için, <RENAME> (<AD DEĞİŞTİR>) özelliğini seçin, yeni bir sayı girin ve enter'a basın.

Takım Grubu Kullanımı

Bir programı kullanmadan önce bir takım grubu ayarlanmalıdır. Bir takım grubunu bir program içinde kullanmak için önce bir takım grubu düzenleyin. Sonra, programdaki takım numarasını, H-kodlarını ve D-kodlarını takım grubu kimlik numarası ile değiştirin. Yeni programlama formatına bir örnek olarak aşağıdaki programa bakın.

Örnek:

T1000 M06 (takım grubu 1000)

G00 G90 G55 X0.565 Y-1.875 S2500 M03

G43 H1000 Z0.1 (H-kodu, 1000 grup kimlik numarsı ile aynıdır) G83 Z-0.62 F15. R0.1 Q0.175 X1.115 Y-2.75 X3.365 Y-2.875 G00 G80 Z1.0 T2000 M06 (takım grubu 2000'i kullanın) G00 G90 G56 X0.565 Y-1.875 S2500 M03 G43 H2000 Z0.1 (H-kodu, 2000 grup kimlik numarsı ile aynıdır) G83 Z-0.62 F15. R0.1 Q0.175 X1.115 Y-2.75 X3.365 Y-2.875 G00 G80 Z1.0 M30
Makrolar

Takım Yönetimi, bir takım grubu içindeki bir takımı devre dışı bırakmak için makrolar kullanabilir. Makrolar 8001 ila 8200, 1'den 200'e kadar takımları gösterir. Bu makrolardan bir tanesini 1'e getirerek operatör bir takımın ömrünü bitirebilir.

Örnek:

#8001 = 1 (bu, takım 1'in ömrünü bitirir ve artık kullanılmayacaktır)

#8001 = 0 (takım 1 manüel olarak veya bir makro ile zaman aşımına uğradığında, makro 8001'in 0 olarak ayarlanması takım 1'in tekrar kullanılabilmesini sağlayacaktır)

Makro değişkenler 8500-8515 takım grubu bilgisi elde etmek için bir G kodu programı etkinleştirir. Takım grubu ID numarası makro 8500 kullanılarak belirlendiğinde, kumanda makro değişkenlerdeki takım grup bilgilerini 8501 ile 8515 arasında geri döndürecektir.

Makro değişken veri etiketi bilgileri için Makrolar bölümünde 8500-8515 değişkenlerine bakın.

Makro değişkenler 8550-8564 her takımın bilgisini elde etmek için bir G kodu programı etkinleştirir. Her takımın ID numarası makro 8550 kullanılarak belirlendiğinde, kumanda makro değişkenlerdeki her takımın bilgilerini 8551 ile 8564 arasında geri döndürecektir. Ayrıca, bir kullanıcı makro 8550 kullanarak bir ATM grup numarasını belirleyebilir. Bu durumda, kontrol 8551-8564 makro değişkenlerini kullanarak belilenen ATM takım grubundaki etkin takım için ayrı takım bilgisini geri getirecektir. Makro bölümündeki 8550-8564 değişkenleri açıklamasına bakın. Bu makrolardaki değerlere ayrıca 1601, 1801, 2001, 2201, 2401, 2601, 3201'den başlayan makrolardan makrolarından ve 5401, 5501, 5601, 5701, 5801 ve 5901'den de erişilebilen veriler sağlar. Bu ilk 8 set 1-200 takımlarının takım verilerine; son 6 set 1-100 takımlarının verilerine erişim sağlar. 8551-8564 makroları aynı veriye erişim sağlar, ancak 1-200 takımları için tüm veri öğelerine erişim sağlar.

Gelişmiş Takım Yönetimi tablolarının Kaydedilmesi ve Geri Yüklenmesi

Kumanda Gelişmiş Takım Yönetimi (ATM) özelliğine bağlı olan değişkenleri USB sürücüsüne ve RS-232'ye kaydedebilir ve geri yükleyebilir. Bu değişkenler ATM ekranına girilen verileri tutarlar. Bilgiler, LIST PROG/ POSIT sayfası kullanılarak tüm yedeklemenin bir parçası olarak kaydedilebilir ya da ATM ekranı getirilerek ve F2 tuşuna basılarak sadece ATM bilgileri kaydedilebilir. Gelişmiş Takım Yönetimi (ATM) verileri tüm yedeklemenin bir parçası olarak kaydedildiğinde, sistem .ATM uzantısı ile ayrı bir dosya oluşturur. ATM verileri, Gelişmiş Takım Yönetimi ekranı görüntülenirken SENDRS232 ve RECV232 düğmelerine basılarak RS232 portu aracılığıyla kaydedilebilir ve geri yüklenebilir.

Opsiyonel Programlanabilen Soğutma Sivisi Musluğu

Opsiyonel programlanabilir soğutma sıvısı (P-cool) iş parçasındaki soğutma sıvısını çeşitli açıklarda yönlendirir. Soğutma sıvısının açısı CNC programı dahilinde değiştirilebilir.

Bu seçenek ile, takım ofseti sayfasında "Coolant Position (Soğutma Sıvısı Konumu)" başlığı taşıyan ilave bir kolon görüntülenecektir. İlgili H kodu ve M08 çağrıldığında, musluk belirli takım için girilen konuma gönderilecektir.

Programlanabilen Soğutma Sıvısı (P-Cool) Ayarı

1. Ofsetler tablosuna girmek için OFFSET butonuna basın, P-cool nozulunu istenen konuma getirmek için CLNT UP veya CLNT DOWN butonuna basın. P-cool konumunu kontrol etmek için soğutuma sıvısını açmak üzere COOLNT tuşuna basın. Not: P-cool konumu ekranın alt sol köşesinde görüntülenir.

2. Coolant Position (Soğutma Sıvısı Konumu) kolonuna, takım için soğutma sıvısı konum numarasını girin ve F1 tuşuna basın. Adımlar 1 ve 2'yi her bir takım için tekrarlayın.

3. Bir H kodu olarak soğutma sıvısı konumunu programa girin. Örneğin H2, nozula Takım 2 Soğutma Sıvısı Konumu kolonuna girilen konumu komut verecektir.

Ayar 15 (H ve T Anlaşması) açık ise, programda komut verilen H kodu ve T kodu aynı olmalıdır (örn. T1 H1 birlikte kullanılmalıdır). Ayar 15 kapalı ise, programda komut verilen H kodu ve T kodunun aynı olması gerekmez (örn. T1 H2 komutu verilebilir).

GRAFIK MODU

Bir programda sorun gidermenin emniyetli yolu, o programı Grafik modda çalıştırmaktır. Makinede hiçbir hareket olmayacak, onun yerine hareket ekranda gösterilecektir.

Grafik modu, Hafızadan, MDI'den, DNC'den veya Düzenleme modlarından çalıştırılabilir. Bir programı çalıştırmak için, Grafik ekranı görüntüleninceye kadar SETNG/GRAPH (AYARLAR/GRAFİK) butonuna basınız. Veya Grafik moduna girmek için Düzenleme modundaki etkin program bölmesinden Cycle Start (Çevrim Başlatma) tuşuna basın. DNC'yi grafik modunda çalıştırmak için DNC'yi seçin ardından grafik ekranına gitmeli ve programı makinenin kumandasına gönderin (Bakınız DNC bölümü). Grafik modda, fonksiyon tuşlarından (F1- F4) bir tanesine basarak erişilebilen üç adet yardımcı ekran özelliği bulunmaktadır. F1, Grafik modda olası fonksiyonların her birisinin kısa bir tanımını veren yardım butonudur. F2, ok tuşlarını kullanarak bir bölgeyi belirleyen, Page Up (Önceki Sayfa) ve Page Down (Sonraki Sayfa) tuşlarıyla zum seviyesini kontrol eden ve Write (Yaz) butonuna basarak zum yapacak olan zum butonudur. F3 ve F4 simülasyon hızını kontrol etmek için kullanılır. Grafik modda tüm makine fonksiyonları veya hareketleri simüle edilmediğini unutmayın.

Kuru Çalıştırma İşlemi

Kuru Çalıştırma fonksiyonu, gerçekte parçaları kesmeden bir programı hızlı bir şekilde kontrol etmek için kullanılır. Kuru Çalıştırma, MEM veya MDI modundayken Dry Run (Kuru Çalıştırma) butonuna basılarak seçilir. Dry Run (Kuru Çalıştırma) fonksiyonunda iken, bütün hızlı işlemler ve beslemeler, elle kumanda hızı butonları vasıtasıyla seçilen hızda çalıştırılır.

Dry Run (Kuru Çalıştırma), yalnızca bir program tamamen bitirildiğinde veya Reset (Sıfırlama) butonuna basıldığında çalıştırılabilir veya durdurulabilir. Dry Run (Kuru Çalıştırma) yine de tüm kumanda edilmiş XYZ hareketlerini ve istenilen takım değişikliklerini gerçekleştirecektir. Dry Run'da (Kuru Çalıştırma) İş Mili hızlarını ayarlamak için atlama tuşları kullanılabilir. Not: Grafik mod da bu amaçla oldukça kullanışlıdır ve program kontrol edilmeden önce makinenin eksenlerini hareket ettirmediğinden daha güvenli olabilir.

Programların Çalıştırılması

Bir kez bir program makineye yüklendikten ve ofsetler ayarlandıktan sonra, Çevrim Başlatma butonuna basarak programı çalıştırınız. Herhangi bir kesme işlemi yapmadan önce programın Grafik modda çalıştırılması önerilir.

ARKA PLAN DÜZENLEME

Arka Plan Düzenleme, bir program çalışırken diğer bir programın düzenlenmesine olanak sağlar. Bir program çalışırken Arka plan Düzenleme'yi etkinleştirmek için arkaplan düzenleme bölmesi (ekranın sağ tarafında) etkinleşene kadar Edit (Düzenle) tuşuna basın. Arkaplan düzenlemesi için listeden bir program seçmek için Select Prog (Prog Seç) düğmesine basın (program Bellekte olmalıdır) ve düzenlemeye başlamak için Write (Yaz)/Enter (Gir) tuşuna basın. Arkaplan düzenlemesi yapmak amacıyla farklı bir program seçmek için arkaplan düzenleme bölmesinden Select Prog (Program Seç) tuşuna basın ve listeden yeni bir program seçin.

Arka Plan Düzenleme esnasında yapılan bütün değişiklikler, çalışan programı veya bunun alt programlarını etkilemeyecektir. Programın sonraki çalıştırılışında değişiklikler etkin hale gelecektir. Arkaplan düzenlemesinden çıkmak ve çalışan programa geri dönmek için Prgrm Convrs düğmesine basın.

Arka Plan Düzenlemede Cycle Start (Çevrim Çalıştırma) butonu kullanılamayabilir. Eğer program, programlanmış bir durdurma (M00 veya M30) içeriyorsa, Arkaplan Düzenlemeden çıkınız (F4'e basınız) ve daha sonra programı devam ettirmek için Cycle Start'a (Çevrim Çalıştırma) basınız.

Not: Bir M109 komutu aktif olduğunda ve Arkaplan Düzenlemesine girildiğinde tüm tuş takımı verisi Arkaplan Düzenleyicisine yönlendirilir, Bir düzenleme tamamlandığında (Prgrm/Convrs düğmesine basılarak) tuş takımı girişi çalışan programdaki M109'a geri dönecektir.

RUN (ÇALIŞTIRMA)-STOP (DURDURMA)-JOG (ELLE KUMANDA)-CONTINUE (DEVAM)

Bu özellik operatörün çalışan bir programı durdurmasını, parçadan uzağa elle kumanda edilmesini, ve sonra program çalıştırmasını sürdürmesini sağlar. Aşağıdaki bir çalıştırma prosedürüdür:

1. Çalışan programı durdurmak için Besleme Bekletme butonuna basın

2. Elle Kumanda Kolu düğmesinden sonra X, Y veya Z'ye basın. Kumanda mevcut X, Y, ve Z konumlarını kaydedecektir. Not: X, Y ve Z dışındaki diğer eksenler elle kumanda edilemez.

3. Kumanda "Jog Away (Uzağa Elle Kumanda)" mesajını gösterecektir. Takımı parçadan uzağa hareket ettirmek için elle kumanda kolunu, uzaktan el kumandasını, el kumandası veya el kilidi butonlarını kullanın. Soğutma sıvısını açmak/kapatmak için, AUX CLNT (TSC), veya COOLNT gibi kontrol butonları kullanın (AUX CLNT iş milinin dönmesini ve kapıların kapalı olmasını gerektirir). İş mili CW, CCW, Stop, Tool Release (Takım Ayırma) butonlarına basılarak kontrol edilebilir. Gerekli ise, takım geçme parçaları değiştirilebilir. Dikkat: Program devam ettirilirken, geri dönüş konumu için eski ofsetler kullanılacaktır. Bu nedenle, programa ara verildiğinde takımları ve ofsetleri değiştirmek güvenli değildir ve tavsiye edilmez.

4. Kaydedilen konuma veya kaydedilen konuma doğru geri engellenmemiş bir hızlı güzergah olabilecek bir konuma mümkün olabildiğince yakın olacak şekilde elle kumanda edin.

5. MEM, MDI, ve DNC tuşuna basarak önceki moda geri dönün. Durdurma sırasında aktif olan mod tekrar girildiyse kumanda sadece devam edecektir.

6. Cycle Start (Çevrim Başlatma) üzerine basın. Kumanda Jog Return (Elle Kumanda Dönüşü) mesajı görüntüleyecek ve X ve Y %5'de Besleme Bekletmeye basılan yerdeki konuma hızla hareket ettirilecek, sonra Z-eksenini döndürecektir. Dikkat: Kumanda uzağa elle kumanda için kullanılan güzergahı izlemeyecektir. Bu hareket sırasında Besleme Bekletmeye (Feed Hold) basılırsa, freze eksen hareketi duracaktır ve "Jog Return Hold (Elle Kumanda Geri Dönüşü Bekletme)" mesajını görüntüleyecektir. Çevrim Başlat (Cycle Start) tuşuna basmak, kumandanın Jog Return (Elle Kumanda Geri Dönüş) hareketini kabul etmesine neden olur. Hareket tamamlandığında, kumanda tekrar bir besleme bekletme durumuna girecektir.

7. Cycle Start (Çevrim Başlatma) butonuna tekrar basın, böylece program normal çalıştırmayı kabul eder. Ayrıca bkz. Ayar 36 Program Yeniden Çalıştırma

Eksen Aşırı Yük Zamanlayıcısı

Bir iş mili veya bir eksenin mevcut yükü akımı aşırı yüklü olduğunda, bir zamanlayıcı başlatılacak ve KONUM bölmesi görüntülenir. 1.5 dakikadan başlar ve sıfıra kadar geri sayar. Süre sıfıra geldiğinde bir eksen aşırı yük alarmı (SERVO OVERLOAD) görüntülenir.

Palet Değiştiricisi (EC-Serisi ve MDC-500)

Giriş

Palet değiştirici CNC programı vasıtasıyla komut edilir. M50 (palet değişikliğini yürüt) fonksiyonu, paletlerin kilidini açma, paletleri kaldırma ve döndürme, sonra paletleri indirme ve tekrar kilitlemekten ibarettir. Palet değiştirici paletleri 1800 döndürür, sonra geri alır; sürekli aynı yönde dönmez.

Palet değiştirici, palet değiştirme işlemi yapılırken yakındaki personeli uyarmak için bir sinyal sesi cihazına sahiptir. Kazaları önlemek için yine de sinyale güvenmeyin.

Palet Değiştirici Uyarıları ve İkazları

• Bir palet değiştirme işlemi sırasında büyük iş parçaları şasiye çarpabilir.

• Palet değiştirme işlemlerini yaparken takım boyu boşluğunu kontrol edin. Uzun takımlar iş parçasıyla çarpışabilir.

EC-300 Gösterilmiştir

Maksimum Palet Yükleri

EC-300550lb (249kg) istasyon başına, %20 içinde dengelenmiştirMDC700lb (318kg) istasyon başına, %20 içinde dengelenmiştirEC-4001 ve 45 derece indeksleyici – 1000 lb palet başınaTam 4. Eksenpalet başına 660 lb

Palet Değiştirici Çalışması

Palet Değiştiriciye M Kodları kullanılarak komut verilir. M50 bir paletin programlı olup olmadığını belirler. Bir palet programlı ise değişecektir veya program duraklar ve operatöre paletin programlı olmadığı bilgisini verir.

G188, geçerli palet için planlanan programı yüklemek ve çalıştırmak için palet planlama tablosunu kullanır. Parça programı tamamlandığında, M99 komutu bir sonraki paleti yüklemek için M50'ye (palet değiştirme) geri döner.

M50 palet planlamasını izlediğinden, bu yöntemde M36 kullanılmaz. M36'da geriye uyumluluk özelliği vardır ve programlanan palet PST kullanmaksızın değiştirilir.

Mesajlar, yükleme/boşaltma ve palet değiştirmede operatöre yardımcı olur. Örneğin, M50 palet değiştirmenin başında yükleme istasyonu hazır değilse ekranda bir mesaj görüntülenir. Mesaj yanıp sönmeye devam edecektir ve yükleme istasyonu hazır olana ve Part Ready (Parça Hazır) butonuna basılana kadar palet değiştirme devam etmeyecektir. Palet değiştirmenin başında yükleme istasyonu hazırsa hiçbir mesaj görünmez ve hiçbir butona basmak gerekmez ve palet değiştirme doğrudan başlatılır.

M46 – Qn Pmm

Eğer palet n yüklü ise geçerli programda mm satırına atlanır yoksa bir sonraki bloğa gidilir.

M48 – Geçerli programın yüklü palet için uygun olduğunu denetleyin

Geçerli programın yüklü palete atanmış olduğunu Palet Planlama Tablosunda (Pallet Schedule Table) kontrol eder . Geçerli program listede yoksa veya yüklü palet program için doğru değilse bir alarm verilir. M48, PST'de listelenen bir program içinde olabilir, ancak PST programının alt programı içinde olamaz. M48 yuvalaması yanlış ise bir alarm verilecektir.

M49Pnn Qmm – nn paletinin durumunu bir mm değerine ayarlar.

Bir P-kodu olmaksızın bu komut mevcut yüklü paletin statüsünü tespit eder. Her bir paletin statüsü (PST) 'nin açılır menüsünde tanımlanır.

Operatör Yükleme İstasyonu (EC-300, EC-400, MDC)

Parçaların yüklemesini/alınmasını kolaylaştırmak ve üretimi hızlandırmak için, palet değiştiren frezeler ilave bir yükleme alnına sahiptir. Yükleme istasyonu bir kapı ile muhafaza edilir ve palet değiştiriciye kumanda etmek için bir alt panelde birkaç buton mevcuttur. Bir emniyet önlemi olarak, bir palet değiştirme olabilmesinden önce yükleme istasyonunun kapısı kapatılmalıdır.

NOT: Yükleme istasyonu paleti bir palet değişikliği yapmak için referans konumunda olmalıdır.

Alt-Panel Kumandaları

Emergency Stop (Acil Durdurma): Buton, operatör asılı kumanda butonlarının tam aynısı gibi davranır.

Döner İndeks: Yükleme istasyonu paletini döndürür (bakınız Ayar 164).

Parça Hazır: Paletin hazır olduğunu göstermek üzere kullanılır. Ayrıca, 1) kontrol operatörü beklerken yanıp sönen veya 2) operatör bir palet değiştirme için hazır olduğunda yanan bir lambası da vardır.

Palet Değiştirici G-Kodu G188 Programı PST'den Al

Palet için PST girişine bağlı olarak yüklü palet için parça programını çağırır

-@-

Palet Değiştirici Programlaması

Palet Değiştirici, her iki palette de aynı parça programlarını veya her bir palet için farklı bir program kullanmak üzere programlanabilir. Palet değiştirme programlaması için mevcut olan seçeneklerden bazıları için "Örnek Programlar" a bakınız.

Yöntem 1 Aşağıdaki bir palet değiştirmenin yapılması için tercih edilen yöntemdir:

Otomatik palet ardışımı yapmak ve parça programı seçmek için, her bir palet "planlanmış" olmalıdır ve bir parça programının atanmış olması gerekir. Planlama iki türlü yapılır, ilkinde palet operatör panelindeki Part Ready (Parça Hazır) tuş girişiyle planlanabilir. Butona basılarak işleme sahasının dışında olan palet planlanır.

İkincisinde ise paletler Palet Planlama Tablosundan (PST) planlanabilirler. Bu ekran CURNT COMDS tuşuna basarak ardından Pallet Schedule Table (Palet Planlama Tablosu) sayfasına gelinceye kadar Page Up veya Page Down tuşlarına basarak bulunabilir. Palet için "Load Order" "(Yükleme Sırası") kutusunu seçmek için ok tuşlarını kullanınız. Bir palet numarası girin ve ardından Write/Enter tuşuna basın. Eğer palet için halihazırda bir öncelik sayısı varsa, diğer paletlerin "Yükleme Sırası" sayıları gerektiği gibi güncellenecektir. Alıcıdaki (iş alanında) paletin "Load Order" sütununda bir yıldız imi bulunacaktır; bu palet planlanamaz.

Bir parça programının atanması da PST ekranında yapılır. Palet için "Program Number" ("Program Numarası") 'nı seçmek üzere ok tuşları kullanılır. Program numarası, program numarası girilerek ve ardından Write/Enter tuşuna basılarak girilir. Örneğin, "O123" yazılıp, ardından Write/Enter tuşuna basılması, O00123 program numarasını tabloya koyacaktır.

Eğer bir parça programı bir M50 (P kodu olmadan) karşılaşırsa ve Part Ready butonuna basılmamışsa, kontrol işlemi duraklatacaktır, işaret ışığı yeşil olarak yanıp sönecektir ve "None Scheduled" mesajı görüntülenir. Freze palet değiştirmeyi gerçekleştirmeden önce Part Ready butonuna basılana veya PST güncellenene kadar bekleyecektir. Bu özellik operatör hazır olmadan bir palet değiştirmenin yer almasını engeller. Part Ready butonuna herhengi bir anda basılabilir ve bir sonraki palet değişikliği istendiğinde hatırlanacaktır.

Yöntem 2

Önceki yöntem önerilmekle beraber, palet değiştirici otomatik ardışım veya PST girişleri olamadan da çalıştırılabilir. Bu bir P kodu ile M50 kullanılarak yapılır. Düzgün işlem yapmak için M50'den önce M36 yer almalıdır. M50 P1'den önce M36 P1 palet No.1'in hazır olduğunu kontrol edecektir.

Paletler otomatik ardışım veya PST girişleri olmadan değiştirilebilir. Bu bir P kodu ile M50 kullanılarak yapılır. M50 P1 planlanıp planlanmadığını kontrol etmeksizin palet No.1'i yükleyecektir. PART READY (PARÇA HAZ-IR) butonuna basıldıysa, o zaman palet No.1 yüklenecektir. READY (PARÇA HAZIR) butonuna palet No.1 için basılmadıysa, buton üzerindeki gösterge lambası yanıp söner ve "Schedule Pal#1" mesajı görüntülenir.

Pallet Schedule Table (Palet Program Tablosu)

Palet planlama tablosunu, kullanıcıya rutin işlerde yardımcı olmak üzere bir takım özelliklere sahiptir.

Load Order (Yükleme Sırası) ve Pallet Status (Palet Durumu) Hangi paletin işleme alanında olduğunu göstermek için bu iki özellik birlikte çalışırlar.

Pallet Usage (Palet Kullanımı) Bu özellik, belirli paletin işleme alanına kaç kez yüklenmiş olduğunu verir. Sayıcı 32767 değiştirmeden sonra 0'a dönecektir.

Program Number (Program Numarası) Bu detay palete hangi program numarasının atandığını gösterir.

Program Comment (Program Yorumu) Bu alan parça programında yazılı olan yorumları gösterir.

Kullanılacak 30 farklı palet statü değeri vardır. İlk dört tanesi: Unscheduled (Planlanmadı), Scheduled (Planlandı), Loaded (Yüklendi) ve Completed (Tamamlandı) sabittir ve değiştirilemez. Kalan 26 tanesi değiştirilebilir ve gerektiği şekilde kullanılabilir.

Statü metni değişikliği veya ilave edilmesi PST'de yapılabilir. İmleci "Palet Statüsü" sütununa getirmek için Ok tuşlarını kullanın ve F1 tuşuna basın. Palet Statüsü sütunun üzerinde bir seçim menüsü görünecektir (F1 veya Reset'e tekrar basılması menüyü kapatacaktır.) Metnin sol tarafındaki sayı statü numarasıdır. Bu numara parça programından statüyü belirlemek için M49 komutu ile kullanılır. Menüdeki seçenekler Yukarı ve Aşağı ok tuşları veya el kumandası ile seçilebilirler. Metni girin, ardından F3'e basın. Not: Bütün paletler aynı statü seçenekleri listesini kullanırlar. F1'e basılması hiçbir paletin statüsünü değiştirmeden menüyü kapatır.

Bir statü seçeneğinin "User (Kullanıcı)" seçeneğine ayarlanması, seçeneği menüden seçip F4'e basarak yapılır. İle Orijin tuşu ile bütün statüler aynı anda sıfırlanabilirler.

Belirli bir paletin statüsünün değiştirilmesi PST'den veya M49 komutu ile yapılabilir. PST'de, tablo imlecini istenen palet için "Palet Statüsü" sütununa getirin. Statü seçeneği menüsü için F1'e basın. Statüyü seçmek için ok tuşlarını kullanın, ardından F2'ye veya Write/Enter'a basın. Palet statüsünü bir programdan ayarlamak için, M49'un önceki açıklamasına ve aşağıdaki örneklere bakınız.

DİKKAT! Aşağıdaki komutlar her iki döner ürünün de hareket etmesine neden olmaktadır: Sıfıra Gitme veya Elle Kumanda

M48, mevcut palet için çalıştırılan programın başına (veya program kısmına) yerleştirilmelidir. Her programın çalıştırılmasında, programın palete uygunluğunu kontrol edecektir. Örneğin:

```
Oxxxx (Kullanıcı programı)
M48
;
; (Palet 1 için kullanıcı parça programı)
;
M30
Oxxxx (Kullanıcı programı)
M48
;
; (Palet 2 için kullanıcı parça programı)
```

M30

Eğer makinedeki palet parça programıyla ilgili olan değilse, bir alarm verilecektir, "A (or B) not in position (A (veya B) yerinde değil". Bu alarm verilirse, yüklü palet için doğru programın çalıştığını doğrulayın.

Önemli: Birinci paletteki döner tablanın "Konektör 1" e takılı olduğunu ve ikinci paletteki döner tablanın "Konektör 2" ye takılı olduğunu doğrulayın.

Örnek Programlar

Örnek No.1

Bir sonraki planlanan paleti yükleyen ve parça programını çalıştıran basit bir palet değiştirme programı. Aşağıdaki, palet No.1'in yüklü ve palet No.2'nin planlanmış olduğunu gösteren bir PST örneğidir. Bundan sonra Palet No.2 yüklenecek (bakınız sütun 2, "Yükleme Sırası") ve program O06012 bu paletle parça kesmek üzere kullanılacaktır (bakınız sütun 5, "Program Numarası"). Program yorumu, programdan elde edilmiştir.

Palet Planlama C	Drneği Tablo 1										
Palet Numarası	Yük Sırası	Palet Durumu	Palet Kullanımı	Program Numarası	Program Yorumu						
1	*	Yüklenmiş	23	O04990	(Kaba İşleme ve Son Ölçüye Getirme Pasosu)						
2	1	Planlanmış	8	O06012	(Yarık Kesme)						
O00001	(Program N	Numarası)									
M50	(Parça Haz	(Parça Hazır butonuna basıldıktan sonra, sonraki palet değişimi)									
G188:	(Yüklü pale	(Yüklü palet için parça programını çağırır)									
M99	(Ana progr	(Ana programın başına döngü yap)									
O04990											
Part Program	(Kullanıcı p	barça programı)									
M99	(Alt progra	mdan geri dönüş)								
O0612											
Part Program											
M49Q12	(Kullanıcı F	Parça Programı)									
M99	Geçerli palet statüsünü operatör tarafından belirlenen 12 diziye ayarla. (Alt programdan geri dönüş)										

Açıklamalar: Program O00001'in ilk döngüsü palet No.2'yi yükleyecektir (M50) ve program O06012'yi çalıştıracaktır (G188, palet No.2 için PST'den programı seçer). PST bundan sonra Örnek Tablo 2'ye benzeyecektir. "Yükleme Sırası" sütunundaki palet No.2 için yıldız imi, bu paletin frezede olduğunu gösterir.

Palet Planlama Ör	neği Tablo 1				
Palet Numarası	Yük Sırası	Palet Durumu	Palet Kullanımı	Program Numarası	Program Yorumu
1	0	Tamamlandı	23	O04990	(Kaba işleme ve Son Ölçüye Getirme)
2	1	Yüklenmiş	9	O06012	(Yarık Kesme)

Açıklamalar: Program O00001'in bir sonraki döngüsünde, M50 hiçbir paletin planlanmadığını tespit edecektir. İşaret ışığı yeşil olarak yanıp sönecek ve operatör bir palet planlayıncaya veya Reset'e basıncaya kadar program O00001 duraklayacaktır. Parça Hazır butonuna basarak bir palet planlanabilir.

Örnek No.2

Herbir palette hangi parçanın işleneceğini izleyen basit palet değiştirme programı. Her palette farklı bir işleme yapılır. M46 için P kodunun, mevcut programda bir alt program numarası değil, bir satır numarası olduğuna dikkat edin.

Oxxxxx	Program numarası
M50	(Parça Hazır butonuna basıldıktan veya PST güncellendikten sonra, palet değiştirme işlemi gerçekleştirilir)
M46 Q1 Pxx1	Bu satır, palet No.1'in makineden olup olmadığını kontrol edecektir. Makinede ise satır xx1'e atlayacaktır. Eğer palet makinede değilse, o zaman bir sonraki satıra devam edecektir. (M46'nın açıklamasına bakın.)
M46 Q2 Pxx2	(Eğer palet No.2 yüklü ise, program, satır xx2'ye atlayacaktır, aksi halde bir sonraki satıra gidecektir.)
M99 Pxxxx	(Nxxxx satırına atla: M99'un daha detaylı bir açıklaması için "M Kodu" kısmına bakınız)
Nxx1	(Satır Numarası.)
Part program	(Palet No.1 için kullanıcı parça programı)
M99 Pxxxx	(Nxxxx satırına atla)
Nxx2	(Satır numarası)
Part program	(Palet No.2 için kullanıcı parça programı)
M99 Pxxxx	(Nxxxx satırına atla)
Nxxxx	(Satır numarası)
M99	(Programi tekrarla)

Örnek No.3

Bu, alt program çağrıları kullanan Örnek No.2'ye alternatif bir yöntemdir, ancak palet planlanmamış ise atlama yapmaz.

NOT: Düzgün işlem yapmak için bir P kodu ile birlikte M50'den önce M36 yer almalıdır.

M36 P1	(Butona basılana veya palet PST'de planlanana kadar ekranda "No Palet Scheduled (Hiçbir Palet Planlanmamış)" yanıp söner, Paleti Planla (Schedule Pallet) No.1'de yeşil işaret lambası yanıp söner)
M50 P1	(Palet No.1'i yükle)
M98 Pxxx1	(Kontrol, program Oxxx1'e atlar ve bu programı çalıştırır)
M36 P2	(Paletin planlanması için bekler)
M50 P2	(Palet No.2'yi yükle)
M98 Pxxx2	(Kontrol, program Oxxx2'ye atlar ve bu programı çalıştırır)
M99	(Programı Tekrarla)

Programın sonundaki M99 devamlı çalışmaya neden olur. Bir programın sonundaki M30, kontrolün, operatörün Cycle Start'a (Çevrim Başlatma) basmasını beklemesine neden olur.

Palet Değiştirici Kurtarma (Dikey Freze APC İçin Değil)

EC-300 veya MDC - Eğer palet değiştirme kesintiye uğramışsa diğer bir M50 çalıştırılmalıdır; M50P1 veya M50P2 kullanın. Eğer bu frezeye yanlış paleti sokarsa, o zaman ilave bir M50 daha çalıştırılmalıdır.

Tüm Diğer Yatay Palet Değiştirme Frezeleri - Palet değiştirici bir palet değiştirme işlemini tamamlayamazsa, operatöre yardımcı olmak için kontrolde bir palet değiştirici kurtarma modu vardır. Palet değiştirici kurtarma moduna girmek için, Recover (Kurtarma) tuşuna basın ve ardından palet değiştirici kurtarma moduna özgü fonksiyon tuşuna (F2) basın. Eğer palet normal pozisyonunda ise, palet değiştirici kurtarma fonksiyonunun geçerli olmadığına dikkat edin.

Başarısız bir palet değiştirmeden kurtulmanın en elverişli yolu, "Y" tuşuna basmak ve ekrana gelen yardım metnini izlemektir. Bir mesaj, operatörden palet değiştirme ardışımının tek bir adımını komut vermesini isteyecektir. Birden fazla adımın tamamlanması gerekebilir, her bir adım tamamlandığında bir sonraki adım için "Y" ye basın. Palet değiştirici kurtarıldığında kontrol kurtarma ekranından çıkacaktır.

Palet Değiştirme

Paletler frezeye yalnızca yükleme istasyonu üzerinden yüklenebilirler. Paletin duruşuna dikkat edin; palet yalnızca bir yönde yüklenebilir. Paletin doğru konumlandırılmasını garantiye almak için palete bir yarık işlenmiştir.

1. Paleti orijinden iki yönden birinde 90 derecede konumlandırın.

2. Fikstürün(lerin) tepesine uygun bir kaldırma aleti bağlayın veya palet deliklerine vidalanmış mapalar kullanın.

3. Yükleme istasyonu pimlerinin üzerine, fakat yükleme istasyonu klitleme plakasının altına gelecek şekilde paleti yaklaşık .25 inç (6.35mm) kaldırın. Yükleme istasyonundan çıkana kadar paleti kendinize doğru çekin.

Paletin Saklanması

Paleti çıkardığınızda, ağaç bir palet gibi yumuşak bir yüzey üzerine yerleştirdiğinizden emin olun. Paletin alt tarafı koruması gereken işlenmiş yüzeylere sahiptir.

İpuçları ve Faydalı Bilgiler

Genel İpuçları

Bir Programın İmleçle Aranması. EDIT (Düzeneleme) veya MEM modunda, program numarasını (Onnnn) girerek ve Yukarı/Aşağı oka basılarak, başka bir program hızlı bir şekilde seçilebilir ve gösterilebilir.

Bir Program Komutunun Aranması. Bir programdaki belirli bir komutu bulmak da MEM veya EDIT modlarından herhangi birisinde mümkündür. Adres kodu harfini (A, B, C, vs.) veya adres kodu harfi ile değerini girin (A1.23) ve Yukarı/Aşağı oklara basın. Eğer adres kodu girilir değer girilmezse, arama o adres kodunun bir sonraki kullanımında değere bağlı olmaksızın durdurulacaktır.

İş Mili Komutu. İş milini **CW** veya **CCW**ile, Tek Satır durdurma veya Besleme Tutmada olduğunuz herhangi bir zamanda durdurun veya çalıştırın. Program **CYCLE START (Çevrim Başlat)** ile yeniden başlattıldığında, iş mili açılır.

Bir MDI Programının Kaydedilmesi. İmleci MDI programının başına yerleştirerek, bir programı MDI'den programlar listesine kaydedin, bir programı numarası (Onnnn) girin ve **Alter (Değiştir)** tuşuna basın.

Bir Ekseni Referansa Hızlı Göndermek. HOME G28 tuşuna basılkarak bütün eksenleri makine sıfırına hızlı bir şekilde gönderin. Eksen harfini (örn. X) girerek, sonra **HOME G28 tuşuna basarak bir ekseni makine sıfırına hızlı hareketle gönderin. DİKKAT!** Muhtemel bir çarpışmaya karşı ikaz edecek hiçbir uyarı bulunmamaktadır.

Ofset

Ofset Değerlerinin Girilmesi. OFFSET tuşuna basılması, Tool Length Offsets (Takım Boyu Ofsetleri) ile Work Zero Offsets (İş Sıfırı Ofsetleri) sayfaları arasında ileri geri gitmenizi sağlayacaktır. Write/Enter'a basılması, girilen sayıyı seçilen ofset değerine ekleyecektir. F1'e basılması, seçilen ofseti girilen sayı ile değiştirecektir. F2'ye basılması eksi değeri ofset olarak girecektir.

Soğutma Sıvısı Musluk Konumu.Soğutma nozulunun konumu takım ofset tablosunda takım numarasından sonra gelen ilk değer olarak görüntülenir.

Bütün Ofsetlerin ve Makro Değişkenlerinin Temizlenmesi. Takım Boyu Ofset ekranında iken, Orijin tuşuna basarak bütün ofsetleri sıfırlayın. Bu aynı zamanda İş Sıfırı Ofsetleri ve Makro Değişkenleri sayfasında da çalışır.

Hesap Makinesi

Basit Hesaplamaların Aktarılması. Basit hesap makinesi kutusundaki (üst sol köşede) sayı, imleci satıra getirerek ve **F3'**e basarak, imleçle seçilen herhangi bir veri satırına aktarılabilir.

EDIT veya MDI'ya Aktarma. F3tuşuna basılması hesap makinesi kutusundaki (imleç kutu içindeki sayı üzerinde olduğunda) sayıyı, EDIT veya MDI modundaki veri giriş satırına aktaracaktır. Hesap makinesinden gelen sayı ile kullanılacak olan harfi (X, Y veya Z) girin.

Dairesel Hesap Makinesi. Dairesel Hesap Makinesi, girilen değerler kullanılarak dairesel bir hareketin programlanabileceği dört değişik yol listeleyecektir. Çözümlerden bir tanesi ya EDIT ya da MDI moduna aktarılabilir. Bunu yapmak için, imleci kullanmak istediğiniz programa getirin ve EDIT veya MDI tuşuna basın.
 F3 tuşuna basın, bu, dairesel hareketi ekranın altındaki veri giriş satırına aktaracaktır. Bu dairesel komut satırını programa aktarmak için Insert 'e basın.

Tek-Satır İfadeler. Hesap makinesi, 23*45.2+6/2 gibi parantezsiz basit bir tek satırlı ifadenin çözülmesine imkan tanır. Write/Enter butonuna basıldığında hesaplanacaktır. Not: Çarpma ve bölme toplama ve çıkarmadan önce işlem görürler.

Programlama

Bir G84 Rijit Kılavuz Çekme Çevriminin Hızlı Ters Dönüşlü Çıkışı.

Bu rijit kılavuz çekme özelliği, kılavuza girişindan daha hızlı çıkış yaptırır. G84 satırındaki bir J kodu buna komut verir, örneğin, J2 iki kat daha hızlı geri çeker, J3 üç kat daha hızlı, vs. J9'a kadar. J kodu her blokta belirtilmelidir.

Bir Programın LIST PROG'da çoğaltılması.

Bir program List Prog modunda, program numarası seçilerek, yeni bir numara yazılırarak (Onnnn), ve **F1** tuşuna basılarak çoğaltılabilir. Açılır listeden "duplicate program/file" ("program/dosya çoğalt")'ı seçin ve Enter tuşuna basın.

İletişim

Program Dosyalarının bir Disketten Alınması. Program dosyaları bir USB Disket Sürücü vasıtasıyla bir disket sürücüden yüklenebilir. Dosyaları transfer etmek için LIST PROG (Programları Listele) menüsünü kullanın.

Program Numaraları Kullanılarak Birden Fazla Programın Gönderilmesi. LIST PROG menüsünde, gönderilecek her programı belirleyerek seçin ve her birinin üzerindeyken WRITE/ENTER tuşuna basarak yanına bir onay işareti koyun. F2 tuşuna basın ve arzu edilen fonksiyonu seçin.

Bir Program Dosyasının LIST PROG Ekranından Gönderilmesi. Dosyalar, LIST PROG ekranından bir USB aygıtına veya RS-232 portu üzerinden gönderilebilirler. Program(lar)ı seçmek için imleç oklarını ve Enter tuşunu veya hepsini bir dosya ismi altında göndermek için "ALL (Tümü)" nü kullanın. F2 tuşuna basıldığı zaman açılır bir menü mevcut fonksiyonları listeler. Birisini seçin ve ENTER (Giriş) tuşuna veya kayıtlı kısayol tuşuna basın.

SEND RS232 Kullanılarak LIST PROG'dan Birden Fazla Programın Gönderilmesi. Bütün program adlarını boşluk bırakmadan giriş satırında bir arada yazarak (örn., O12345O98765) ve SEND (Gönder) RS232'ye basarak, seri porta birkaç program gönderilebilir.

Ofsetler, Ayarlar, Parametreler ve Makro Değişkenleri Diskete Gönderme/Disketten Alma. Ofsetler, ayarlar, parametreler ve makro değişkenleri bir depolama aygıtına kaydedilebilirler. LIST PROG tuşuna basın, ardından kendisine kaydetmek istediğiniz veya kendisinden yüklenecek olan aygıtın sekmesini seçin. F4 tuşuna basın ve uygun fonksiyonu seçin, ardından WRITE (Yaz) tuşuna basın.

Ofsetler, Ayarlar, Parametreler ve Makro Değişkenleri RS232'ye Gönderme/RS232'den Alma. Ofsetler, ayarlar, parametreler ve makro değişkenleri RS-232 portuna kaydedilebilirler. List Prog'a basın ve bir ekran sayfası seçin (örn. OFSET, SETNG). Bu ekran sayfasını RS-232 portuna göndermek için bir dosya ismi girin ve Send RS232'ye basın. Dosyayı RS-232 yoluyla okumak için RECV RS232'ye basın.

Bir Program Dosyasının bir Disketten Silinmesi. LIS PROG ekranından, bir dosya disket sürücüden silinebilir. "DEL <dosya ismi>" yazın ve Write Enter'e basın.

Sezgisel Programlama Sistemi (IPS)

Giriş

İsteğe bağlı Sezgisel Programlama Sistemi (IPS) yazılımı tüm CNC programlarının gelişmesini kolaylaştırır.

IPS menüsüne girmek için MDI/DNC'ye, ardından PROGRM/CONVRS tuşuna basın. Sol ve sağ ok tuşlarını kullanarak menülerde dolaşın. Menüyü seçmek için Write/Enter (Yaz/Gir) düğmesine basın. Bazı menüler bir alt menüyü seçmek için tekrar sol ve sağ ok tuşlarının ve Enter (Gir) düğmesinin kullanıldığı alt menülere sahiptir. Değişkenler arasında dolaşmak için ok tuşlarını kullanın. Rakam tuşlarını kullanarak ve Write/Enter (Yaz/Gir) tuşuna basarak bir değişken girin. Menüden çıkmak için Cancel (İptal) düğmesine basın.

IPS menülerinden çıkmak için herhangi bir Ekran tuşuna basın. IPS menülerine geri dönmek için MDI/DNC modunda PROGRM/CONVRS tuşuna basın.

IPS menülerinden girilen bir programa ayrıca MDI modunda da erişilebileceğini unutmayın.

Otomatik Mod

Bir otomatik işlem çalıştırılmadan önce Takım ve Çalışma ofsetleri ayarlanmalıdır. Kurulum ekranında kullanılan her bir takım için değer girin. Takım otomatik işlemde çağırıldığında takım ofsetleri referans edileceklerdir.

Aşağıdaki her bir interaktif ekranda kullanıcıdan genel talaşlı işleme görevlerini tamamlamak için gerekli olan bilgileri girmesi istenir. Tüm veriler girildiğinde, "Cycle Start" (Çevrim Başlat) butonuna basılması talaşlı işleme prosedürünü başlatacaktır.

Örnek ISP Ekranı

Seçeneğin Açılması ve Kapatılması

IPS seçeneği parameter 315 bit 31 (Intuitive Prog Sys-Sezgisel Prog Sist) kullanılarak açılır ve kapatılır. Seçeneğe sahip frezeler bu parametre biti 0'a çevrilerek geleneksel Haas programına döndürülebilir.

Bunu yapmak için, PARAM/DGNOS düğmesine basın, "315" girin ve aşağı oka basın. En sonuncu parametre bitine (Sezgisel Prog Sist) atlamak için sol ve sağ oku veya el kumandasını kullanın. Acil Durdurma düğmesine basın, "0" (sıfır) girin ve giriş tuşuna basın.

IPS seçeneğini yeniden aktive etmek için, daha önce anlatıldığı gibi parametre bitine atlayın, Acil Durdurma düğmesine basın, "1" yazın ve Enter tuşuna basın.

IPS Kayıt Cihazı

IPS kayıt cihazı IPS tarafından oluşturulan G-kodunu yeni veya mevcut programlar içine yerleştirmek için basit bir yöntem sağlar.

Çalıştırma

1. IPS'e erişmek için MDI/DNC'ye basın, ardından PROGRM CONVRS tuşuna basın.

2. Kayıt cihazı kullanılabilir olduğunda, sekmenin alt sağ köşesinde kırmızı renkte bir mesaj görünür:

CENTER DRILL DRILL TOOL TAP TOOL	$\int 0^{\circ}$
CENTER DEPTH DRILL DEPTH TAP DEPTH 0.0000 in 0.0000 in 0.0000 in	
CENTER PECK DRILL PECK 0.0000 in 0.0000 in	
WRK ZERO OFST 54 R PLANE [NUM OF HOLES 0.2000 in 0	Press <cycle start=""> to run in MDI or <f4></f4></cycle>
X CENTER PT DIAMETER CENTER HOLE 0.0000 in 0.0000 in 0	program.
Y CENTER PT ANGLE O.0000 in 0.0000 deg	

3. IPS kayıt cihazı menüsüne erişmek için F4 tuşuna basın. Devam etmek için menü seçeneği 1 veya 2'yi veya seçenek 3'ü seçin ve IPS'e geri dönün. F4 ayrıca IPS kayıt cihazı içindeki herhangi bir noktadan IPS'e geri dönmek için de kullanılabilir.

IPS Kayıt Cihazı Menüsü

Menü Seçeneği 1: Program Seç / Oluştur

Bellekteki mevcut bir programı seçmek veya G-kodunun ekleneceği yeni bir program oluşturmak için bu menü seçeneğini seçin.

1. Yeni bir program oluşturmak için, istenen program numarasının ardından 'O' harfini girin ve WRITE (Yaz) tuşuna basın. Yeni program oluşturulur, seçilir ve görüntülenir. Yeni programın içine IPS G-kodunu eklemek için bir kere daha WRITE (Yaz) tuşuna basın.

2. Mevcut bir programı seçmek için, O formatını (Onnnn) kullanarak mevcut bir program numarası girin, sonra programı seçmek ve açmak için WRITE (Yaz) düğmesine basın. Mevcut programlar listesinden seçmek için giriş yapmadan WRITE (Yaz) tuşuna basın. Bir program seçmek imleç ok tuşlarını kullanın ve açmak için WRITE (Yaz) tuşuna basın.

MANUAL	SETUP	FACE	DRILL	POCKET MILLIN	GENG	RAVING VOC
CENTER DRILL	S	elect / Create Pi	rogram	F4	-CANCEL	
CENTER DEPT	H [000 in [000000 (P 000001 (P 000002 (P 000003 (P 000004 (P	ROGRAM ROGRAM ROGRAM ROGRAM ROGRAM	A) B) C) D) E)		
CENTER PECK	000 in [000005 (P *000006 (P	ROGRAM Rogram	F) G)		
WRK ZERO OF	ST					CVCLE START >
		Choose keys	a program and press	by using the curse WRITE to select. or	or	n MDI or <f4> d output to a</f4>
		Enter a numbe	r and pres	ed by a new progra s WRITE to create		ſ
Y CENTER PT	000 in	GLE 0.000 d	eg			
BOLT CIRCLE	BOLT L	INE SINGL	E HOLE	MULTIPLE HOLES		

3. Ok tuşlarını kullanarak, imleci yeni kod için istenen ekleme noktasına getirin. Kodu girmek için WRITE (Yaz) düğmesine basın.

Menü Seçeneği 2: Mevcut Programa Çıktı

1. Bellekte mevcut olarak seçili programı açmak için bu seçeneği seçin.

2. İmleci yeni kod için istenen ekleme noktasına getirmek için ok tuşlarını kullanın. Kodu girmek için WRITE (Yaz) düğmesine basın.

DXF Dosya Aktarici

Bu özellik hızlı bir şekilde bir .dxf dosyasından CNC G kodu programı yapılandırabilir. Bu üç adımla sağlanır:

DXF aktarıcısı özelliği süreç boyunca ekran üzerinden yardım sağlar. Adım taslak kutusu hangi adımların tamamlandığını tamamlanan her adımı yeşil metne çevirerek gösterir. Gerekli tuşlar adımların yanında tanımlanır. İleri kullanım için ilave tuşlar kolonun sol tarafında belirtilir. Takım güzergahı tamamlandığında bellekteki herhangi bir programa eklenebilir. Bu özellik tekrarlı görevleri belirleyecek ve bunları otomatik olarak çalıştıracaktır, örneğin aynı çaplı tüm delikleri bulmak. Uzun kontürler ayrıca otomatik olarak birleştirilir.

NOT: DXF aktarıcısı sadece IPS seçeneği ile kullanılabilir.

IPS'deki kesim takımlarını ayarlayarak başlayın. Bir .dxf dosyası seçin ve F2 tuşuna basın. Kumanda bir DXF dosyası tespit edecek ve bunu düzenleyiciye aktaracaktır

1. Parçanın orijinini ayarlayın.

Bu üç yöntemden biri kullanılarak yapılabilir.

- a. Nokta Seçimi
- b. Elle kumanda
- c. Koordinatların Girilmesi

Bir noktayı belirlemek için el kumandası veya ok tuşları kullanılır; belirlenen noktayı orijin olarak kabul etmek için "Enter (Gir)" düğmesine basın. Bu ham parçanın iş koordinat bilgilerini ayarlamak için kullanılır.

2. Zincir / Grup

Bu adım şeklin(lerin) geometrisini bulur. Otomatik zincirleme fonksiyonu birçok parça geometrisini bulacaktır. Geometri karmaşık ise ve dallara ayrılıyorsa, bir yanıt görüntülenecektir böylece operatör dallardan birini seçebilir. Otomatik zincirleme bir dal seçildiğinde devam edecektir. Benzer delikler delme ve/veya frezede kılavuz çekme işlemleri için birlikte gruplanır.

IAIN OPTIONS CAN Automatic Chaining Manual Chaining Emdove Group References Remove All Group References	CEL - Exit	TOOLPATH OPERATION FACE CONTOUR POCKET DRILL ISLAND	CANCEL -
NUTOMATICALLY FINDS A PATH T HAIN. IF MULTIPLE PATHS ARE NCOUNTERED, WILL SWITCH TO P HAINING) MANUAL	Create a single pass cont	our tool path.

Takım güzergahının başlangıç noktasını seçmek için el kumandasını veya ok butonlarını kullanınız. Diyalog kutusunu açmak için F2 düğmesine basın. İstenen uygulamaya en çok uyan seçeneği seçin. Otomatik Zincirleme fonksiyonu genellikle en iyi seçimdir çünkü bu bir parça özelliği için takım güzergahını otomatik olarak çizecektir. "Enter (Gir)" düğmesine basın Bu o parçanın özelliğinin rengini değiştirecek ve pencerenin sol tarafındaki "Mevcut grup" altına kaydetmek için bir grup ekleyecektir.

3. Takım Güzergahı Seçin

Bu adım belirli bir zincirli gruba takım güzergahı çalışması uygulayacaktır. Grup seçin ve bir takım güzergahı seçmek için F3 tuşuna basın. Parça özelliğinin bir ucunu iki eşit parçaya bölmek için el kumandasını kullanın; bu takım için bir giriş noktası olarak kullanılacaktır. Bir takım güzergahı seçildiğinde, o güzergahın IPS (Sezgisel Programlama Sistemi) şablonu görüntülenecektir.

Birçok IPS şablonu kabul edilebilir varsayılanlar ile doldurulur. Bunlar kurulmuş olan takım ve malzemelerden elde edilir.

Şablon tamamlandığında takım güzergahını kaydetmek için F4 tuşuna basın; IPS G-kodunu ya mevcut bir programa ekleyin veya yeni bir program oluşturun. Bir sonraki takım güzergahı oluşturmak üzere DXF aktarım özelliğine geri dönmek için EDIT (Düzenle) düğmesine basın.

Programlama

Düzenleme kullanıcıya açılır menüleri kullanarak programları düzenleme kabiliyeti sağlar.

Düzenleme moduna girmek için EDIT (Düzenleme) tuşuna basın. İki tane düzenleme bölmesi mevcuttur; bir etkin program bölmesi ve bir etkin olmayan program bölmesi. EDIT (Düzenle) tuşuna basarak iki bölme arasında geçiş yapın.

Bir programı düzenlemek için, etkin program bölmesinden program adını (Onnnn) girin ve SELECT PROG (Program Seç)'a basın, program aktif pencerede açılacaktır. F4 butonuna basılması, etkin olmayan program bölmesinde hali hazırda bir program bulunmaması halinde burada bu programın bir diğer kopyasını açar. Ayrıca, etkin olmayan program bölmesinde SELECT PROG (Program Seç) tuşuna basılarak ve listeden bir program seçerek etkin olmayan program bölmesinde farklı bir program da seçilebilir. İki bölme arasında programları karşılıklı olarak değiştirmek için F4 tuşuna basın (etkin programı etkisiz hale getirin ve tersi). Program kodu içerisinde gezinmek için el kumandasını veya yukarı/aşağı ok butonlarını kullanınız.

Temel Düzenleme Modu Planı

Açılır Menüye erişmek için F1 tuşuna basın. Konu menüsünden (YARDIM, DEĞİŞTİR, ARA, DÜZENLET, PROGRAM) seçmek için Sol ve Sağ imleç oku tuşlarını kullanın ve bir fonksiyonu seçmek için Yukarı ve Aşağı tuşlarını kullanın veya elle kumada edin. Menüden çalıştırmak için Enter (Giriş)'e basın. Ekranın alt sol kısmındaki içeriğe duyarlı bir yardım bölmesi geçerli seçilmiş fonksiyon ile ilgili bilgi sağlar. Yardım mesajları arasında gezinmek için Page Up (Önceki Sayfa)/Down (Sonraki Sayfa) tuşlarını kullanın. Bu mesaj ayrıca bazı fonksiyonlar için kullanılabilecek kısa yol tuşlarını da listeler.

Program Menüsü

Create New Program (Yeni Bir Program Yarat)

Bu menü maddesi yeni bir program yaratacaktır. Bunu yapmak için, bir program adı (Onnnnn) (daha önceden program dizininde olmayan) giriniz ve programı yaratmak için Enter'a (Giriş) basınız. Kısa Yol Tuşu - Select Prog (Program Seç)

Select Program From List (Programın Listeden Seçilmesi)

Bellekte mevcut olan bir programı düzenlemek için bu menü maddesini seçiniz.

Bu menü maddesi seçildiğinde, ekranda kumandadaki programlar gösterilecektir. İmleç tuşlarını veya elle kumanda kolunu kullanarak liste içerisinde gezininiz. Enter'a veya Select Prog'a basılması, seçilen program ile program listesini değiştirmek üzere, seçilen programı gösterecektir. Kısa Yol Tuşu - Select Prog (Program Seç)

Duplicate Active Program (Aktif Programın Kopyasının Yaratılması)

Bu seçim mevcut programın kopyasını yaratacaktır. Kullanıcı, kopya programa bir program (Onnnn) numarası girmesi için uyarılacaktır.

Delete Program From List (Programın Listeden Silinmesi)

Bu menü maddesi bir programı, program belleğinden silecektir. Kısa Yol Tuşu - Erase Prog (Program Sil)

Editör Programlarını Karşılıklı Değiştirmek

Etkin programı etkin olmayan program bölmesine koyun ve etkin olmayan programı etkin program bölmesine koyun.

Kısa Yol Tuşu - F4

Switch To Left Or Right Side (Sol Veya Sağ Tarafa Geçiş)

Bu, düzenleme için etkin ve etkin olmayan programların birinden ötekine geçer. Etkin olmayan ve etkin olan programlar kendi bölmelerinde kalırlar. Kısa Yol Tuşu - Edit (Düzenle)

Düzenleme Menüsü

Undo (Geri Alma)

Son düzenleme işlemi, son 9 düzenleme işlemine kadar geri alınacaktır. Kısa Yol Tuşu - Undo (Geri Al)

Select Text (Metnin Seçilmesi)

Bu menü maddesi, metin seçiminin başlangıç noktasını belirlemek üzere program kodunun satırlarını seçecektir. Ardından, seçilecek olan kodun son satırına gitmek için imleç tuşlarını, home, end, page up/down tuşlarını veya el kumandasını kullanın ve F2 veya Write/Enter (Yaz/Gir) tuşuna basın. Seçilen metin gösterilecektir. Bloğun seçimini iptal etmek için Undo'ya (Geri Alma) basınız. Kısa Yol Tuşu - seçime başlamak için F2 , seçimi sonlandırmak için F2 veya Write (Yaz) tuşu.

Move Selected Text (Seçilen Metnin Taşınması)

Bu özellik "Select Text (Metnin Seçilmesi)" özelliği ile birlikte çalışır. İmleç okunu kodun istenilen kısmına alınız ve seçilen metni yeni konumuna taşımak için Write/Enter (Yaz/Gir) butonuna basınız. Seçilen metin imleçten (>) sonraki noktaya taşınacaktır.

Copy Selected Text (Seçilen Metnin Kopyalanması)

Metni seçmek için, imleç okunu (>) metnin bir kısmına getiriniz ve Write/Enter (Yaz/Gir) butonuna basınız. Kopyalanan metin gösterilecektir. İmleç okunu, kopyalanan metni içerisine yerleştirilecek olan metin parçasına getirin. Kopyalanan metni imleçten (>) sonraki noktaya yerleştirmek için, F2'ye veya Write/Enter (Yaz/Gir) butonuna basınız. Kısa Yol Tuşu - Metni Seçin, İmleçi konumlandırın ve Write (Yaz) tuşuna basın.

Delete Selected Text (Seçilen Metnin Silinmesi)

Metni seçmek için, imleç okunu (>) metnin bir kısmına getiriniz ve Write/Enter (Yaz/Gir) butonuna basınız. Kopyalanan metin gösterilecektir. Seçildikten sonra, metni silmek için Write/Enter (Yaz/Gir) butonuna basınız. Eğer bir blok seçilmezse, mevcut seçilen madde silinecektir.

Cut Selection To Clipboard (Seçimin Panoya Kesilerek Alınması)

Seçilen tüm metin, mevcut programdan pano olarak adlandırılan yeni bir programa taşınacaktır. Panonun varsa önceki içeriği silinecektir.

Copy Selection To Clipboard (Seçimin Panoya Kopyalanması)

Seçilen tüm metin, mevcut programdan pano olarak adlandırılan yeni bir programa kopyalanacaktır. Panonun varsa önceki içeriği silinecektir.

Paste From Clipboard (Panodan Yapıştırma)

Panonun içeriği, mevcut imleç konumunu takip eden satırdan mevcut programın içerisine kopyalanacaktır.

Arama Menüsü

Find Text (Metni Bul)

Bu menü maddesi, mevcut programda metin veya program kodu arayacaktır.

Find Again (Yeniden Bul)

Bu menü maddesi, aynı program kodu veya metin için yeniden arama yapacaktır.

Find And Replace Text (Metni Bul Ve Değiştir)

Bu menü maddesi, mevcut programda belirli bir metin veya programı arayacak ve isteğe bağlı olarak, herbirini (veya tamamını) diğer bir G-Kodu maddesi ile değiştirecektir.

Değiştirme Menüsü

Remove All Line Numbers (Bütün Satır Numaralarını Kaldır)

Bu menü maddesi, referans gösterilmeyen bütün N-Kodlarını (satır numaralarını) otomatik olarak düzenlenen programdan kaldıracaktır. Bir satır gurubu seçilirse, yalnızca bu satırlar etkilenecektir.

Renumber All Lines (Bütün Satırları Yeniden Numarala)

Bu menü maddesi ya programdaki tüm seçili blokları yeniden numaralayacak, ya da bir satır gurubu seçiliyse, yeniden numaralama özelliği yalnızca o satırları etkileyecektir.

Renumber By Tool (Takıma Göre Yeniden Numarala)

T (takım) kodlarını arar, bir sonraki T koduna kadar olan tüm program kodunu seçer ve program kodundaki N kodunu (satır numaraları) yeniden numaralandırır.

Reverse + & - Signs (+ ve - İşaretlerini Tersine Çevir)

Bu menü maddesi nümerik değerlerin işaretlerini tersine çevirecektir. İşlemi başlatmak için giriş tuşuna basınız ve ardından değişecek olan eksenleri (örneğin X, Y, Z, vs.) giriniz. Bu özelliği kullanırken, program bir G10 veya G92 içeriyorsa dikkatli olunuz (Bir açıklama için G Kodu bölümüne bakınız).

Ters X & Y

Bu özellik programdaki X adres kodlarını Y adres kodlarına ve Y'leri X'lere dönüştürecektir.

IGE	R IUŞLAR	
	INSERT	INSERT (Araya Gir), bir programda seçilen metnin, imleç ok noktasını yerleştirdiğiniz yerin arkasındaki satıra kopyalanması için kullanılabilir.
	ALTER	ALTER (Değiştir), bir programda seçilen metnin, imleç ok noktasından sonraki satıra taşınması için kullanılabilir.
	DELETE	DELETE (Silme), bir programda seçilen metnin silinmesinde kullanılabilir.
	UNDO	Eğer bir blok seçilmişse, UNDO'ya (Geri Alma) basılması basit bir şekilde bir blok tanımlamasından çıkmayı sağlayacaktır.

KESICI TELAFISI

Kesici telafisi, takımın gerçek merkez hattının programlanan güzergahın sol veya sağ tarafına alınacak şekilde kaydıracak şekilde takım güzergahının kaydırılması yöntemidir. Normal olarak kesici telafisi özellik boyutunu kontrol etmek üzere takımı kaydırmak için programlanır. Ofset ekranı takımın kaydırılma miktarını girmek için kullanılır. Ofset, hem geometri hem de aşınma değerleri için, ayar 40'a göre bir çap veya yarıçap değeri olarak girilebilir. Çap belirtilirse, kaydırma miktarı girilen değerin yarısıdır. Efektif ofset değerleri geometri ve aşınma değerlerinin toplamıdır. Kesici telafisi sadece 2D işleme için X-ekseni ve Y-ekseninde kullanılabilir (G17). 3D işleme için, kesici telafisi X-ekseni, Y-ekseni ve Z-ekseninde kullanılabilir (G141).

Kesici Telafisinin Genel Açıklaması

G41 sol kesici telafisini seçecektir; yani, ofset sayfasında girilen miktarı telafi etmek üzere takım programlanan güzergahın soluna alınır (Ayar 40'a bakın). G42 kesici telafisi sağı seçecektir, bu, takımı programlanan güzergahın sağına taşıyacaktır. Yarıçap/çap ofset sütunundan doğru ofset sayısını seçmek için, G41 veya G42 kullanılarak bir Dnnn de programlanmalıdır. Eğer ofset negatif bir değer içeriyorsa, kesici telafisi, zıt G kodu belirtilmiş gibi çalışacaktır. Örneğin, G41 için girilen negatif bir değer, G42 için pozitif bir değer girilmiş gibi davranacaktır. Ayrıca, kesici telafisi seçilmişse (G41 veya G42), dairesel hareketler için sadece XY düzlemini ullanabilirsiniz (G17). Kesici Telafisi sadece X-Y düzleminde telafi ile sınırlıdır.

G40 kodu kesici telafisini iptal edecektir ve bir makineye güç verildiğindeki varsayılan durumdur. Programlanan güzergah, iptal edildiğinde, kesici güzergahının merkezi ile aynıdır. Kesici telafisi aktif olduğunda bir programı (M30, M00, M01 veya M02) sonlandıramazsınız.

Kontrol her defasında bir hareket bloğun üzerinde çalışır. Bununla birlikte, X veya Y hareketlerini içeren sonraki iki bloğu kontrol etmek için ileri bakacaktır. Engelleme kontrolleri bu üç bilgi bloğu üzerinde gerçekleştirilir. Ayar 58 kesici telafisinin bu parçasının çalışmasını kontrol eder. Yasnac ya da Fanuc olarak ayarlanabilir.

Ayar 58 için Yasnac'ın seçilmesi durumunda, kumanda, takımın yan kısmını, sonraki iki hareketi fazla kesim yapmadan programlanan konturun tüm kenarları boyunca konumlandırabilmelidir. Dairesel bir hareket tüm dış açıları birleştirecektir.

Ayar 58 için Fanuc'un seçilmesi durumunda, kumanda, takımın kesen kenarının, fazla kesim yapmayı önleyerek programlanan konturun tüm kenarları boyunca konumlandırmasını gerekli kılmaz. Bununla birlikte, kesicinin güzergahı aşırı kesim önlenebilecek şekilde programlanmışsa bir alarm verilecektir. 270 dereceden daha az veya bu değere eşit dış açılar, keskin bir köşe ile birleştirilir ve 270 dereceden daha fazla dış açılar ise, ekstra doğrusal bir hareket ile birleştirilir (Bakınız aşağıdaki şemalar).

Aşağıdaki şemalar, Ayar 58'in iki değeri için kesici telafisinin nasıl çalıştığını göstermektedir. Takım yarıçapından daha az olan ve önceki harekete dik açı yapan küçük bir kesimin sadece Fanuc ayarı ile çalışacağını unutmayın.

Kesici Telafisinden Giriş ve Çikiş

Kesici telafisi girilirken ve çıkış yapılırken veya soldan sağ taraf telafisine değiştirirken, bilinmesi gereken özel durumlar vardır. Bu hareketlerin herhangi birisi devam ederken kesim gerçekleştirilmemelidir. Kesici telafisini aktive etmek için, G41 veya G42 ile sıfır olmayan bir D kodu belirlenmelidir ve kesici telafisini iptal eden satırda G40 belirlenmelidir. Kesici telafisini açan blokta, hareketin başlangıç konumu programlanan konum ile aynıdır, ancak bitiş konumu programlanan güzergahın ya soluna ya da sağına, yarıçap/çap ofset sütunundaki değer kadar ofset olacaktır. Kesici telafisini kapatan blokta başlangıç noktası ofsettir ve bitiş noktası ofset değildir. Benzer şekilde, soldan sağa veya sağdan sol tarafa telafi için değişiklik yaparken, kesici telafisi yönünü değiştirmek için gerekli olan hareketin başlangıç noktası programlanan güzergahın bir tarafına doğru ofset olacak ve programlanan güzergahın zıt tarafına ofset olan bir noktada bitecektir. Bütün bunların sonucu, takımın niyet edilen güzergah veya yönle aynı olmayabilecek bir güzergah boyunca hareket etmesidir (Bkz. resim A). Herhangi bir X-Y hareketi olmaksızın bir blok içerisinde kesici telafisi açılır veya kapatılırsa, bir sonraki X or Yhareketi oluşuncaya kadar tkesici telafisinde yapılan bir değişiklik yoktur. Kesici telafisinden çıkmak için, G40 belirlemelisiniz.

Takımı kesilen parçadan kurtaran bir harekette kesici telafisini daima kapatmalısınız. Kesici telafisi aktif iken bir program sona erdirilirse, bir alarm verilir. Ayrıca, dairesel bir hareket sırasında (G02 veya G03) kesici telafisini açamaz veya kapatamazsınız; aksi halde bir alarm verilir.

D0 gibi bir ofset seçimi, ofset değeri olarak sıfırı kullanacak ve kesici telafisini kapatılması ile aynı etkiye sahip olacaktır. Kesici telafisi hala aktifken yeni bir D değeri seçilirse, yeni değer bir sonraki hareketin sonunda etkisini gösterecektir. Dairesel bir hareket bloğu esnasında D değerini veya tarafları değiştiremezsiniz.

90 dereceden daha az bir açıda ikinci bir hareket tarafından takip edilen bir harekette kesici telafisini açarken, ilk hareketi hesaplamanın iki yöntemi vardır: kesici telafi tip A ve tip B (Ayar 43). Tip A Ayar 43'de varsayılandır ve normal olarak gerekli olandır; takım ikinci kesim için doğrudan ofset başlangıç noktasına gider. Tip B kelepçenin fikstürü etrafında bir boşluk gerektiğinde veya parça geometrisinin gerektirdiği nadir durumlarda kullanılır. Aşağıdaki sayfalarda bulunan şemalar, Fanuc ve Yasnac ayarlarının her ikisi için tip A ile tip B arasındaki farkı göstermektedir (Ayar 58).

Hatalı Kesici Telafisi Uygulaması

Hatalı Kesici Telafisi Uygulaması

Takım yarıçapından daha az olan ve önceki harekete dik açı yapan küçük bir kesimin sadece Fanuc ayarı ile çalışacağını unutmayın. Makine Yasnac ayarına ayarlanmışsa, bir kesici telafi alarmı verilecektir

KESICI TELAFISINDE BESLEME AYARLARI

Kesici telafisini dairesel hareketlerde kullanırken, programlanan devir hızı ayarlarına değişiklik yapılması olasılığı mevcuttur. Eğer düşünülen nihai kesim bir dairesel hareketin içi kısmında ise, yüzey beslemesinin programlayıcının düşündüğü değeri geçmediğinden emin olmak üzere takım yavaşlatılmalıdır. Bununla birlikte, hız çok fazla yavaşlatılırsa sorunlar ortaya çıkar. Bu nedenle, bu durumda beslemenin ayarlandığı miktarla sınırlandırmak için Ayar 44 kullanılır. %1 ila %100 arasında ayarlanabilir. %100 ayarlanmışsa, hiçbir devir değişikliği olmaz. %1 olarak ayarlanmışsa, devir programlanmış beslemenin %1'i kadar yavaşlar.

Kesim dairesel bir hareketin dışında olduğu zaman besleme hızına yapılan hiçbir hızlandırma yoktur.

Kesici Telafi Girişi (Yasnac)

Kesici Telafi Girişi (Fanuc stili)

DAIRESEL İNTERPOLASYON VE KESICI TELAFISI

Bu bölümde, G02 (Dairesel İnterpolasyon Saat Yönünde), G03 (Dairesel İnterpolasyon Saatin Tersi Yönde) ve Kesici Telafisi (G41:Kesici Telafisi Sol, G42: Kesici Telafisi Sağ) kullanımı anlatılır.

G02 ve G03'ü kullanarak makinenin dairesel hareketler ve yarıçaplar kesmesini programlayabiliriz. Genellikle, bir profil veya bir kontür programlarken, iki nokta arasındaki yarıçapı tanımlamanın en kolay yolu bunu bir R ve bir değerle yapmaktır. Tam dairesel hareketler (360o) için, bir değer ile bir I veya bir J belirlenmelidir. Daire bölümü resmi bir dairenin farklı bölümlerini açıklayacaktır.

Bu bölümde kesici telafisi kullanarak, programlayıcı kesiciyi tam miktarda kaydırabilecek ve bir profili veya bir kontürü tam baskı boyutlarında işleyebilecektir. Kesici telafisi kullanarak, programlama süresi ve bir programlama hesaplama hatasının olasılığı gerçek boyutların programlanabilmesi ve parça boyutu ve geometrisinin kolayca kontrol edilebilmesi sayesinde azaltılır.

Aşağıdakiler başarılı işleme çalışmaları gerçekleştirmek üzere sıkı bir şekilde uyulması gereken kesici telafisi ile ilgili birkaç kuraldır. Programlama sırasında daima bu kurallara uyun.

1. Kesici yarıçapına veya telafisi yapılan miktara eşit veya daha büyük bir G01 X,Y hareketi sırasında kesici telafisi AÇILMALIDIR.

2. Kesici telafisi kullanan bir işlem yapıldığında, AÇMA işlemindeki aynı kuralları kullanarak, yani girilenin çıkışı yapılarak, kesici telafisinin KAPATILMASI gereklidir.

3. Birçok makinede, kesici telafisi sırasında, kesici yarıçapından daha küçük olan bir lineer X,Y hareketi çalışmayabilir. (Ayar 58 - Fanuc'a ayarla - pozitif sonuçlar için.)

4. G02 veya G03 ark hareketinde kesici telafisi AÇILAMAZ veya KAPATILAMAZ.

5. Kesici telafisi aktif iken, aktif D değeri ile tanımlanandan daha küçük bir yarıçap ile bir iç arkın işlenmesi makinenin alarm vermesine neden olacaktır.

Aşağıdaki şekil kesici telafi için takım güzergahının nasıl hesaplandığını gösterir. Detaylı bölüm takımı başlangıç konumunda ve sonra kesici iş parçasına ulaştığında ofset konumunda gösterir.

Takım güzergahını gösteren programlama uygulaması.

Aşağıdaki program kesici telafisi kullanmamaktadır. Takım güzergahı kesicinin merkez hattına programlanır. Bu aynı zamanda kumandanın kesici telafisini hesaplamakta kullandığı yoldur.

Aşağıdaki program kesici telafisi kullanır. Takım güzergahı kesicinin merkez hattına programlanır. Bu aynı zamanda kumandanın kesici telafisini hesaplamakta kullandığı yoldur.

O6100 T1 M06 G00 G90 G54 X-1. Y-1. S5000 M03 G43 H01 Z.1 M08 G01 Z-1.0 F50. G41 G01 X0 Y0 D1. F50. Y4 125 G02 X.250 Y4.375 R.375 G01 X1.6562 G02 X2.0 Y4.0313 R.3437 G01 Y3.125 G03 X2.375 Y2.750 R.375 G01 X3.5 G02 X4.0 Y2.25 R.5 G01 Y4375 G02 X3.4375 Y-.125 R.5625 G01 X-.125 G40 X-1. Y-1. G00 Z1.0 M09 G28 G91 Y0 Z0 M30

Makrolar

Giriş

Bu kontrol özelliği opsiyoneldir; bilgi için servisinizi arayın.

Makrolar, standart G-kodu ile mümkün olmayan yetenekler ve kontrol için esneklik sağlar. Olası bazı kullanımlar, parçaların familyası, özel korunmalı çevrimler, karmaşık hareketler ve opsiyonel cihazların kullanımıdır. İmkanlar neredeyse sınırsızdır.

Bir makro, birçok defa çalıştırılabilen herhangi bir rutin/alt programdır. Bir makro komutu, bir değeri bir değişkene tahsis edebilir veya bir değişkenden değeri okuyabilir, bir ifadeyi değerlendirebilir, şartlı veya şartsız olarak bir program içinde bir başka noktada dallara ayırabilir, veya şartlı olarak programın bir bölümünü tekrarlayabilir.

Aşağıda Makroların uygulamalarına birkaç örnek bulacaksınız.

 Acil, Tabla Üzerinde Fikstür için Takımlar Birçok ayar işlemleri makiniste yardımcı olmak için yarı-otomatik olabilir. Örneğin, standart bir cıvata deliği deseni ile standart bir kelepçe kullanıldığını varsayın. Ayarlamadan sonra kalıplamanın ilave bir kelepçeye ihtiyaç duyduğu tespit edilirse ve kelepçenin cıvata deseni delme işlemi için makro alt yordam programlanmışsa, o zaman aşağıdaki iki adım işlem kalıplamaya kelepçe eklemek için tüm gerekli olandır.

1. Makineyi önerilen kelepçe konumuna elle kumanda ederek ve makine ekranından konum koordinatlarını okuyarak kelepçenin yerleştirileceği yerin X, Y ve Z koordinatlarını ve açısını belirleyin.

2. MDI modunda aşağıdaki komutu çalıştırın:

G65 P2000 X??? Y??? Z??? A??? ;

Konum "???" Adım 1'de belirtilen değerlerdir.

Burada, makro 2000 (p2000) tüm işi takip eder çünkü A'nın tanımlanan açısında kelepçe cıvata deliği desenini delmek için tasarlanmıştır. Aslında; makinist özel bir korunmalı çevrim yaratmıştır.

• **Tekrarlanan Basit Modeller** Tekrar tekrar modellerin oluşması makroların kullanımı olarak tanımlanabilir ve kaydedilir. Örneğin:

- 1. Cıvata deliği modelleri
- 2. Oyuk açma
- 3. Açısal modeller, herhangi sayıda delik, herhangi bir açıda, herhangi boşlukla
- 4. Yumuşak çene gibi uzman frezeleme
- 5. Matris Modelleri, (örn. 12 karşı ve 15 aşağı)

6. Bir yüzeyi hareket halinde kesme, (örn. 5 inç ile 12 inç, bir 3 inç hareketli kesici kullanılarak)

• **Programa Bağlı Otomatik Ofset Ayarı** Makrolarla, koordinat ofsetleri her bir programda ayarlanabilir böylece kurulum işlemleri kolaylaşır ve hata eğilimi azalır (makro değişkenler #2001-2800).

- Probing Prob kullanımı makinenin yeteneklerini arttırır, bazı örnekler:
- 1. Talaş işlemi için, bir parçanın bilinmeyen ebatlarını tanımlamak için profilinin oluşturulması.
- 2. Ofset ve aşınma değerleri için takım kalibrasyonu.
- 3. Talaş işleminden önce döküm üzerindeki malzeme toleransını tanımlamak için inceleme.
- 4. Talaşlı işlem sonrası paralelliği, düzlüğü ve aynı zamanda konumu belirlemek için denetim.

Faydalı G ve M Kodları

M00, M01, M30 - Durdurma Programı
G04 - Rolanti Süresi
G65 Pxx - Makro alt program çağrısı. Değişkenlerin geçişine izin verir.
M96 Pxx Qxx - Ayrı Giriş Sinyali 0 olduğunda Koşullu Yerel Branşman
M97 Pxx - Yerel Alt Yordam Çağrısı
M98 Pxx - Alt Program Çağrısı
M99 - Alt Program Geri Dönüşü veya Döngüsü
G103 - Blok Önden Okuma Limiti. Kesici telafisine izin verilmez
M109 - İnteraktif Kullanıcı Girişi (bkz. "M Kodları" bölümü)

Ayarlar

Makro programlarını (9000 serisi programları) etkileyen 3 ayarlama vardır, bunlar 9xxxx progs Lock (#23), 9xxx Progs Trace (#74) ve 9xxx Progs Single BLK (#75)'tur.

Önden Okuma

Önden okuma, makro programlamada büyük önem taşır. Kontrol, işlemi hızlandırmak için zamanından önce mümkün olabildiği kadar çok sayıda hattı işlemeye çalışacaktır. Bu, makro değişkenlerinin yorumlanmasını içerir. Örneğin,

#1101=1 G04 P1. #1101=0

Bir çıktıyı açmayı amaçlar, 1 saniye bekler, ve sonra kapatır. Buna rağmen, önden okuma bu çıktının açılmasına ve daha sonra rölanti süresi işlemdeyken hemen geri kapanmasına neden olacaktır. G103 P1 önden okumayı 1 bloğa sınırlamak için kullanılabilir. Bu örneğin doğru bir şekilde çalışmasını sağlamak için, aşağıdaki şekilde düzenlenmelidir:

```
G103 P1 (G103 ile ilgili daha fazla açıklama için el kitabında G-kodu bölümüne bakın)
```

```
;
#1101=1
G04 P1.
;
;
;
#1101=0
```

Yuvarlama

Kontrol ondalık sayıları çift sayı olarak kaydeder. Bunun sonucu olarak, değişkenlere kaydedilen sayılar en sağdaki 1 basamak açısından farklı olabilir. Örneğin, makro değişkenine #100 7 sayısı kaydedildi, daha sonra 7.000001, 7.000000, veya 6.999999 olarak okunabilir. İfade "IF [#100 EQ 7]..." ise, yanlış okuma verebilir. Bunun daha güvenli bir şekilde programlanması için kullanılacak olan şudur, "IF [ROUND [#100] EQ 7]...". Daha sonrasında kesirli parça görmeyi beklenmeyen makro değişkenlerine kesir kaydederken bu bir problem yaratabilir.

Çalıştırma Hakkında Notlar

Makro değişkenleri, ayarlamalar ve ofsetler gibi, RS-232 veya USB portu aracılığıyla kaydedilebilir veya yüklenebilir.

Değişken Ekran Sayfası

Makro değişkenleri mevcut komutlar ekranından görüntülenebilir ve düzenlenebilir. Sayfalara ulaşmak için, CURNT COMDS düğmesine basın ve önceki/sonraki sayfa tuşunu kullanın.

Kontrol bir programı yorumladığında, değişken değişiklikleri değişken ekran sayfasında görüntülenir ve sonuçlar izlenebilir.

Makro değişkeni, bir değerin girilmesiyle ve sonra Write/Enter (Yaz/Gir) düğmesine basarak ayarlanır. Makro değişkenleri Origin (Orijin) düğmesine basılarak silinebilir, bu tüm değişkenleri silecektir.

Makro değişkeni sayısı girildiğinde ve yukarı/aşağı okuna basıldığında o değişken aranacaktır.

Görüntülenen değişkenler programın çalışması sırasındaki değişkenlerin değerini temsil eder. Bu durumda, bu gerçek makina hareketlerinin 15 blok ilerisinde olabilir. Blok tamponlamayı sınırlamak için bir programın başlangıcında bir G103 takarken programın ayıklanması daha kolaydır ve daha sonra G103'ün çıkarılması sonrasında ayıklanma tamamlanır.

Makro Argümanları

Bir G65 beyanındaki argümanlar, değerleri göndermek ve bir makro alt yordamının yerel değişkenlerin ayarlanması anlamına gelir.

Önceki 2 numaralı örnekte, X ve Y argümanları (değerleri) makro alt yordam yerel değişkenlerine geçirilir. Yerel değişken 24, X ile birleştirilir ve 0.5'e ayarlanır. Benzer olarak, Yerel değişken 25, Y ile birleştirilir ve 0.25'e ayarlanır.

Aşağıdaki iki tablo, bir makro alt yordamında kullanılan alafabetik adres değişkenlerinin sayısal değişkenlere eşleşmesini gösterir.

Alfabetik Adresleme

Adres:	A	В	C	D	E	F	G	H	l	J	K'dır.	L	M
Değişken:	1	2	3	7	8	9	-	11	4	5	6	-	13
Adres:	N (Hayır)	0	P	Q	R	S	T	U	V	W	X	E	Z
Değişken	-	-	-	17	18	19	20	21	22	23	24	25	26

Alternatif Alfabetik Adresleme

Adres:	A	B	C	l	J	K'dır.	l	J	K'dır.	l	J
Değişken:	1	2	3	4	5	6	7	8	9	10	11
Adres:	K'dır.	l	J	K'dır.	l	J	K'dır.	l	J	K'dır.	l
Değişken:	12	13	14	15	16	17	18	19	20	21	22
Adres:	J	K'dır.	l	J	K'dır.	l	J	K'dır.	l	J	K'dır.
Değişken:	23	24	25	26	27	28	29	30	31	32	33

Argümanlar herhangi bir yüzer noktalı değeri dört ondalık basamaklı olarak kabul eder. Kontrol metrik ise, bindelik olarak kabul edecektir (.000). Örnek 3'te, yerel değişken #7, .0004 alacaktır. Eğer bir ondalık argüman değerinde mevcut değilse, örneğin: G65, P9910, A1, B2, C3, değerler aşağıdaki tabloya göre makro alt programlarına geçer:

Tamsayı Argüman Geçişi (ondalık kesim olmadan)

Adres:	А	В	С	D	E	F	G
Değişken:	.001	.001	.001	1.	1.	1.	-
Adres:	Н	I	J	K'dır.	L	Μ	N (Hayır)
Değişken	1.	.0001	.0001	.0001	1.	1.	-
Adres:	0	Р	Q	R	S	Т	U
Değişken:	-	-	.0001	.0001	1.	1.	.0001
Adres: Değişken:	V .0001	W .0001	X .0001	E .0001	Z .0001		

Tüm 33 yerel makro değişkenleri, alternatif adresleme yöntemini kullanarak argümanlarla atanmış değerler olabilir. Aşağıdaki örnekler iki koordinat setinin bir makro alt yordamına nasıl gönderileceğini gösterir. #4'den #9'a kadar yerel değişkenler .0001'den .0006'ya sırasıyla ayarlanacaktır.

Örnek 3: G65 P2000 I1 J2 K3 I4 J5 K6;

Aşağıdaki harfler parametreleri bir makro alt programına geçirmek için kullanılamaz: G, L, N, O veya P.

Makro Değişkenleri

Makro değişkenlerinin üç kategorisi vardır: sistem, global ve yerel.

Katsayılar, bir makro ifadesine yerleştirilmiş yüzer nokta değerleridir. Bunlar A-Z adresleri ile birleşebilirler veya bir ifadenin içinde kullanıldıklarında yalnız olabilirler. Katsayılar için örnekler .0001, 5.3 veya -10'dur.

Yerel Değişkenler

Yerel değişkenler aralığı #1 ve #33'tür. Yerel değişkenler seti daima mevcuttur. Bir alt program bir G65 komutu ile çağrı çalıştırıldığında, yerel değişkenler kaydedilir ve yeni bir set kullanıma hazır olur. Buna yerel değişkenlerin "ağı" adı verilir. Bir G65 çağrısı sırasında, tanımsız değerler ve G65 hattı değerleri olarak ayarlanmış G65 hattındaki ilgili adres değişkenlerine sahip herhangi bir değişken olarak tüm yeni değişkenler silinir. Aşağıda, onları değiştiren adres değişkeni argümanları ile birlikte yerel değişkenleri içeren bir tablo mevcuttur:

Değişken: Adres: Alternatif:	1 A	2 B	3 C	4 I	5 J	6 K'dır.	7 D I	8 E J	9 F K'dır.	10 I	11 H J
Değişken: Adres: Alternatif:	12 K'dır.	13 M I	14 J	15 K'dır.	16 I	17 Q J	18 R K'dır.	10 S I	20 T J	21 U K'dır.	22 V I
Değişken: Adres: Alternatif:	23 W J	24 X K'dır.	25 E I	26 Z J	27 K'dır.	28 I	29 J	30 K'dır.	31 I	32 J	33 K'dır.

10, 12, 14-16 ve 27-33 değişkenlerinin ilgili adres argümanları yoktur Yukarıda argümanlarla ilgili bölümde gösterilen I, J ve K argümanları yeterli sayıda kullanılmışsa bunlar ayarlanabilir. Makro alt yordamında bir kere yerel değişkenler okunabilir ve 1-33 değişken sayıları gönderilerek düzenlenebilir.

Bir makro alt yordamının bir çok defa tekrarının yapılması için L argümanı kullanıldığında, argümanlar sadece ilk tekrarda ayarlanır. Bu, 1-33 yerel değişkenleri ilk tekrarda düzenlenirse, bir sonraki tekrar sadece düzenlenen değerlere ulaşabilecektir anlamına gelir. L adresi 1'den büyük olduğunda yerel değerler tekrardan tekrara tutulur.

Bir M97 veya M98 vasıtasıyla bir alt programı çağırmak yerel değişkenler ağı oluşturmaz. M98 olarak adlandırılan alt programda başvurulan herhangi bir yerel değişken, M97 veya M98 çağrısından önce mevcut olan değişkenlerler ve değerlerle aynıdır.

Küresel Değişkenler

Küresel değişkenler her zaman ulaşılabilen değişkenlerdir. Her bir küresel değişkenin sadece bir kopyası mevcuttur. Küresel değişkenler üç aralıkta görülür: 100-199, 500-699 ve 800-999. Güç kesildiğinde küresel değişkenler hafızada kalır.

Bazen, küresel değişkenleri kullanan fabrika ayarları için yazılmış bazı makrolar vardır. Örneğin, problama, palet değiştiriciler, vb. Küresel değişkenleri kullanırken, makinede başka bir program tarafından kullanılmadığına emin olun.

Sistem Değişkenleri

Sistem değişkenleri programlayıcıya çeşitli kontrol durumları ile etkileşme yeteneği sağlar. Bir sistem değişkeninin ayarlanması ile, kontrol fonksiyonu düzenlenebilir. Bir istem değişkeninin okunmasıyla, bir program değişkendeki değere bağlı olarak davranışını düzenleyebilir. Bazı sistem değişkenleri bir Read Only (Salt Okunur) durumuna sahiptir; bu programlayıcının onları düzenleyemeyeceği anlamına gelir. Halihazırda uygulanmış sistem değişkenlerinin özet tablosu bunların kullanım açıklamalarını da içerir.

DEĞİŞKENLER	KULLANIM
#0	Bir sayı değil (salt okunur)
#1-#33	Makro çağrı argümanları
#100-#199	Genel amaçlı değişkenler güç kesildiğinde kaydedilir
#500-#699	Genel amaçlı değişkenler güç kesildiğinde kaydedilir
#700-#749	Gizli değişkenler sadece dahili kullanım içindir.
#800-#999	Genel amaçlı değişkenler güç kesildiğinde kaydedilir
#1000-#1063	64 ayrı girişler (salt okunur)
#1064-#1068	X, Y, Z, A, ve B-eksenleri için sırasıyla maksimum eksen yükleri
#1080-#1087	Sayısal girişlere ham analog (salt okunur)
#1090-#1098	Sayısal girişlere filtrelenmiş analog (salt okunur)
#1094	Soğutma Sıvısı Seviyesi
#1098	Haas vektör sürücü ile iş mili yükü (salt okunur)
#1100-#1139	40 ayrı çıktılar
#1140-#1155	Çoklu çıktı vasıtasıyla 16 ekstra röle çıktıları
#1264-#1268	C, U, V, W, ve T-eksenleri için sırasıyla maksimum eksen yükleri
#1601-#1800	1 ila 200 arasındaki takımların Oluk sayısı
#1801-#2000	1 ila 200 arasındaki takımların azami kaydedilmiş titreşimleri
#2001-#2200	Takım boyu ofsetleri
#2201-#2400	Takım boyu aşınmaları
#2401-#2600	Takım çap/yarıçap ofsetleri
#2601-#2800	Takım çap/yarıçap aşınması

DEĞİŞKENLER	KULLANIM
#3000	Programlanabilir alarm
#3001	Milisaniye zamanlayıcı
#3002	Saat Zamanlayıcı
#3003	Tek satır bastırma
#3004	Atlama kontrolü
#3006	Mesaj ile programlanabilir durma
#3011	Yıl, ay, gün

DEĞİŞKENLER	KULLANIM
#3002	Saat zamanlayıcı
#3003	Tek satır bastırma
#3004	Atlama kontrolü
#3006	Mesaj ile programlanabilir durma
#3011	Yıl, ay, gün
#3012	Saat, dakika, saniye
#3020	Güç açma zamanlayıcısı (salt okunur)
#3021	Çevrim başlatma zamanlayıcısı
#3022	Besleme zamanlayıcısı
#3023	Mevcut parça zamanlayıcısı
#3024	Son tamamlanan parça zamanlayıcısı
#3025	Önceki parça zamanlayıcısı
#3026	İş milindeki takım (salt okunur)
#3027	İş mili devri (salt okunur)
#3028	Alıcı üzerine yüklenen palet sayısı
#3030	Tek Satır
#3031	Kuru Çalştrm
#3032	Blok Silme
#3033	Ops Durdurma
#3201-#3400	1 ila 200 arasındaki takımların Gerçek Çapları
#3401-#3600	1 ila 200 arasındaki takımların programlanabilir soğutma sıvısı konumları
#3901	M30 sayı 1
#3902	M30 sayı 2
#4000-#4021	Önceki blok G-Kodu grup kodları
#4101-#4126	Önceki blok adres kodları

Not: 4101'den 4126'ya eşleştirme "Makro Argümanları" bölümündeki alfabetik adresleme ile aynıdır; örn. x1.3 ifadesi değişkeni #4124'den 1.3'e ayarlar. Eksenlerin eşlemesi x=1, y=2, ... b=5, örneğin, Z makine koordinat sistemi değişkeni #5023 olacaktır.

DEĞİŞKENLER	KULLANIM
#5001-#5005	Önceki blok son konum
#5021-#5025	Şimdiki makine koordinat konumu

DEĞİŞKENLER	KULLANIM
#5041-#5045	Şimdiki iş koordinat konumu
#5061-#5069	Şimdiki atlama sinyal konumu - X, Y, Z, A, B, C, U, V, W
#5081-#5085	Mevcut takım ofseti
#5201-#5205	G52 İş Parçası Ofsetleri
#5221-#5225	G54 İş Parçası Ofsetleri
#5241-#5245	G55 İş Parçası Ofsetleri
#5261-#5265	G56 İş Parçası Ofsetleri
#5281-#5285	G57 İş Parçası Ofsetleri
#5301-#5305	G58 İş Parçası Ofsetleri
#5321-#5325	G59 İş Parçası Ofsetleri
#5401-#5500	Takım besleme zamanlayıcıları (saniye)
#5501-#5600	Toplam takım zamanlayıcıları (saniye)
#5601-#5699	Takım ömrü monitör limiti
#5701-#5800	Takım ömrü monitör sayacı
#5801-#5900	Takım yükü monitör azami yükü algılandı
#5901-#6000	Takım yükü monitör limiti
#6001-#6277	Ayarlar (salt okunur)
#6501-#6999	Parametreler (salt okunur)

Not: Büyük değerlerin alçak konum bitleri, ayarlar ve parametrelerin makro değişkenlerinde görünmeyecektir.

DEĞİŞKENLER

KULLANIM

#7001-#7006 (#14001-#14006) G110 (G154 P1) ek iş parçası ofsetleri #7021-#7026 (#14021-#14026) G111 (G154 P2) ek iş parçası ofsetleri #7041-#7046 (#14041-#14046) G112 (G154 P3) ek iş parçası ofsetleri #7061-#7066 (#14061-#14066) G113 (G154 P4)ek iş parçası ofsetleri #7081-#7086 (#14081-#14086) G114 (G154 P5) ek iş parçası ofsetleri #7101-#7106 (#14101-#14106) G115 (G154 P6) ek iş parçası ofsetleri G116 (G154 P7) ek iş parçası ofsetleri #7121-#7126 (#14121-#14126) #7141-#7146 (#14141-#14146) G117 (G154 P8) ek iş parçası ofsetleri #7161-#7166 (#14161-#14166) G118 (G154 P9) ek iş parçası ofsetleri #7181-#7186 (#14181-#14186) G119 (G154 P10) ek iş parçası ofsetleri G120 (G154 P11) ek iş parçası ofsetleri #7201-#7206 (#14201-#14206) #7221-#7226 (#14221-#14221) G121 (G154 P12) ek iş parçası ofsetleri #7241-#7246 (#14241-#14246) G122 (G154 P13) ek iş parçası ofsetleri #7261-#7266 (#14261-#14266) G123 (G154 P14) ek iş parçası ofsetleri #7281-#7286 (#14281-#14286) G124 (G154 P15) ek iş parçası ofsetleri #7301-#7306 (#14301-#14306) G125 (G154 P16) ek iş parçası ofsetleri #7321-#7326 (#14321-#14326) G126 (G154 P17) ek iş parçası ofsetleri #7341-#7346 (#14341-#14346) G127 (G154 P18) ek iş parçası ofsetleri #7361-#7366 (#14361-#14366) G128 (G154 P19) ek iş parçası ofsetleri #7381-#7386 (#14381-#14386) G129 (G154 P20) ek iş parçası ofsetleri #7501-#7506 Palet önceliği

DEĞİŞKENLER	KULLANIM
#7601-#7606	Palet durumu
#7701-#7706	Parça programı numaraları paletlere atanırlar
#7801-#7806	Palet kullanım sayısı
#8500	Gelişmiş Takım Yönetimi (ATM). Grup ID
#8501	ATM. Gruptaki bütün takımların mevcut olan takım ömrü yüzdesi.
#8502	ATM. Gruptaki toplam mevcut takım kullanımı sayısı.
#8503	ATM. Gruptaki toplam mevcut takım deliği sayısı.
#8504	ATM. Gruptaki toplam mevcut takım besleme süresi (saniye cinsinden).
#8505	ATM. Gruptaki toplam mevcut toplam süresi (saniye cinsinden).
#8510	ATM. Kullanılacak olan bir sonraki takım numarası.
#8511	ATM. Bir sonraki takımın mevcut takım ömrü yüzdesi.
#8512	ATM. Bir sonraki takımın mevcut kullanım sayısı.
#8513	ATM. Bir sonraki takımın mevcut delik sayısı.
#8514	ATM. Bir sonraki takımın mevcut besleme süresi (saniye cinsinden).
#8515	ATM. Bir sonraki takımın mevcut toplam süresi (saniye cinsinden).
#8550	Ayrı takım iç çapı
#8551	Takımların Oluk Sayısı
#8552	Maksimum kayıtlı titreşimler
#8553	Takım boyu ofsetleri
#8554	Takım boyu aşınmaları
#8555	Takım çapı ofsetleri
#8556	Takım çapı aşınması
#8557	Gerçek çap
#8558	Programalanabilir soğutma sıvısı konumu
#8559	Takım besleme zamanlayıcısı (saniye)
#8560	Toplam takım zamanlayıcıları (saniye)
#8561	Takım ömrü monitör limiti
#8562	Takım ömrü monitör sayacı
#8563	Takım yükü monitör azami yükü algılandı
#8564	Takım yükü monitör limiti
#14401-#14406	G154 P21 ek iş parçası ofsetleri
#14421-#14426	G154 P22 ek iş parçası ofsetleri
#14441-#14446	G154 P23 ek iş parçası ofsetleri
#14461-#14466	G154 P24 ek iş parçası ofsetleri
#14481-#14486	G154 P25 ek iş parçası ofsetleri
#14501-#14506	G154 P26 ek iş parçası ofsetleri
#14521-#14526	G154 P27 ek iş parçası ofsetleri
#14541-#14546	G154 P28 ek iş parçası ofsetleri
#14561-#14566	G154 P29 ek iş parçası ofsetleri
#14581-#14586	G154 P30 ek iş parçası ofsetleri
•	

•

#14781-#14786	G154 P40 ek iş parçası ofsetleri
#14981-#14986	G154 P50 ek iş parçası ofsetleri
#15181-#15186 •	G154 P60 ek iş parçası ofsetleri
#15381-#15386 •	G154 P70 ek iş parçası ofsetleri
#15581-#15586 •	G154 P80 ek iş parçası ofsetleri
#15781-#15786 •	G154 P90 ek iş parçası ofsetleri
15881-15886	G154 P95 ek iş parçası ofsetleri
15901-15906	G154 P96 ek iş parçası ofsetleri
15921-15926	G154 P97 ek iş parçası ofsetleri
15941-15946	G154 P98 ek iş parçası ofsetleri
15961-15966	G154 P99 ek iş parçası ofsetleri

Derinlikte Sistem Değişkenleri

Değişkenler #750 ve #751

Bu değişkenler girdileri seri port 2'den toplarlar. Programlayıcı seri port 2 ara belleğinde sıralanmış veriler üzerinde test yapabilir ve işlem için veri toplayabilir. Değişken #750, RS232 port 2'de bekleyen veri olması durumunda programlayıcıyı bilgilendirecektir. 1 değeri alıcı ara bellekte sıralandırılmış veri olduğunu gösterir, aksi halde 0 değeri ger döndürülecektir. Değişken 751, veri sıralandırıldığında giriş ara belleğinden ilk karakteri toplar. Bunun anlamı, boş olup olmadığının anlaşılması için ilk önce ara bellek içeriğinin kontrol edildiğidir, eğer boş değilse sıralandırılmış bir sonraki karakter değeri geri döndürülecektir.

1-Bit Ayrı Girişler

"Yedek" olarak gösterilen grişler harici cihazlara bağlanabilir ve programlayıcı tarafından kullanılır.

1-Bit Ayrı Çıktılar

Haas kumandası 56 ayrı çıktıya kadar kontrol edebilir. Buna rağmen, bu çıktıların birkaçı halihazırda Haas kontrolörü tarafından kullanıma ayrılmışlardır.

DİKKAT! Sistem tarafından ayrılmış çıktıları kullanmayın. Bu çıktıların kullanımı yaralanmaya veya ekipmanınızda hasara neden olabilir.

Kullanıcı "yedek" olarak gösterilmiş değişkenleri yazarak bu çıktıların durumunu değiştirebilir. Çıktılar rölelere bağlanmışsa, "1" ataması röleyi ayarlar. "0" ataması röleyi siler.

Bu çıktıların referans gösterilmesi, çıktının mevcut durumunu geri döndürecektir ve bu belki de son atanan değer olacaktır veya M kodu kullanımı tarafından ayarlanan çıktının son durumu olacaktır. Örneğin, #1108 çıktısının "yedek" olarak doğrulanmasından sonra:

#1108=1;(#1108 rölesini açar)

#101=#3001+1000; (101, şu andan itibaren 1 saniyedir)

WHILE [[#101 GT #3001] AND [#1109 EQ 0]] D01

END1 (1 saniye veya #1109 rölesi yukarı çıkana kadar burada bekleyin)

#1108=0; (#1108 rölesini kapatır)

Kontrol M-kodu röle kartı ile donatılmamışsa, M21 ve M28 arası #1132-#1139'den eşleşecektir. Eğer M-kodu röle kartı takılı ise, bilgi ve talimatlar için 8m-opsiyonu bölümüne bakın.

NOT: Daima, yeni donanım kullanan makrolar için geliştirilmiş programları test edin veya kuru çalıştırın.

Azami Eksen Yükleri

Aşağıdaki değişkenler her bir eksen için azami yük değerlerini kapsamak için kullanılır. Makineye çevrim gücü verilerek veya programda makroyu sıfır olarak ayarlayarak (örneğin, #1064=0;) silinebilirler.

1064 = X ekseni	1264 = C ekseni
1065 = Y ekseni	1265 = U ekseni
1066 = Z ekseni	1266 = V ekseni
1067 = A ekseni	1267 = W ekseni
1068 = B ekseni	1268 = T ekseni

Takım Ofsetleri

Herbir takım ofseti aşınma değerleri ile birleştirilmiş bir uzunluğa (H) ve çapa (D) sahiptir.

#2001-#2200 #2200-#2400 #2401-#2600 #2601-#2800 Uzunluk için H geometri ofsetleri (1-200). Uzunluk için H geometri aşınması (1-200). Çap için D geometri ofsetleri (1-200). Çap için D geometri aşınması (1-200).

Programlanabilir Mesajlar

#3000 Alarmlar programlanabilirler. Programlanabilir bir alarm dahili alarmlar gibi çalışacaktır. Makro değişkeni #3000'in 1 ve 999 arasında bir sayıya ayarlanması ile bir alarm oluşturulabilir.

#3000= 15 (MESSAGE PLACED INTO ALARM LIST) (MESAJ ALARM LİSTESİNE EKLENDİ);

Bu yapıldığında, "Alarm" ekranın altında yanıp söner ve bir sonraki yorumda metin alarm listesine yerleştirilir. Alarm numarası (bu örnekte, 15) 1000'e eklenir ve bir alarm numarası olarak kullanılır. Bu tarzda bir alarm oluştu ise, tüm hareket durur ve devam etmek için program sıfırlanmalıdır. Programlanabilir alarmlar daima 1000 ila 1999 arasında numaralandırılır. İfadenin ilk 34 karakteri alarm mesajı için kullanılır.

Zamanlayıcılar

İki zamanlayıcı ilgili değişkene bir numara tahsis edilerek bir değere ayarlanabilirler. Bir program bu değişkeni okuyabilir ve zamanlayıcının ayarlanmasından itibaren geçen süreyi saptayabilir. Zamanlayıcılar bekleme çevrimlerini kopyalamak için, kısımdan kısıma zamanı veya zamana bağlı davranışın her ne zaman istendiğini tanımlamak için kullanılabilirler.

#3001 Mili saniye Zamanlayıcısı - Mili saniye zamanlayıcısı her 20 mili saniyede güncelleştirilir ve bu nedenle aktiviteler sadece 20 mili saniyelik hassasiyetle zamanlanabilirler. Güç açıldığında, mili saniye zamanlayıcısı sıfırlanır. Zamanlayıcının 497 günlük sınırı vardır. #3001'e ulaştıktan sonra geri dönen tüm numara mili saniye sayısını temsil eder.

#3002 Saat Zamanlayıcısı - Saat zamanlayıcısı, #3002'ye ulaştıktan sonra geri dönen numaranın saat olması dışında mili saniye zamanlayıcısına benzer. Saat ve mili saniye zamanlayıcıları birbirlerinden bağımsızdırlar ve ayrı ayarlanabilirler.
Sistem Atlamaları

#3003 Değişken 3003 Tek Satır Bastırma parametresidir. Tek Satır fonksiyonunu G-kodunda atlar. Aşağıdaki örnekte #3003 1'e eşit olarak ayarlandığında Tek Satır reddedilir. M3003 =1 olarak ayarlandıktan sonra, her bir G-kodu komutu (2-5 satırları) Tek Satır fonksiyonu AÇIK olsa da sürekli olarak çalıştırılır. #3003 sıfıra eşit olarak ayarlandığında, Tek Satır normal olarak çalışacaktır. Her bir kod satırında (7-11 satırları) kullanıcı Cycle Start (Çevrim Başlatma) tuşuna basmalıdır.

#3003=1; G54 G00 G90 X0 Y0; S2000 M03; G43 H01 Z.1; G81 R.1 Z-0.1 F20.; #3003=0; T02 M06; G43 H02 Z.1; S1800 M03; G83 R.1 Z-1. Q.25 F10.; X0. Y0.;

Değişken #3004

Değişken #3004 çalışırken belirli kontrol özelliklerini atlayan bir değişkendir.

İlk bit Besleme Bekletme butonunu devreden çıkarır. Kodun bir bölümünde besleme bekletme kullanılmayacaksa, kodun belirli satırlarından önce 1'e atanmış #3004 değişkenini koyun. Kodun bu bölümünden sonra, #3004'ü Besleme Bekletme butonunun fonksiyonunu tekrar kaydetmek için 0'a ayarlayın. Örneğin:

Yaklaşma	a kodu (Besleme Bekl	letme izinli)	
#3004=1	; (Besleme Bekl	letme butonunu devrede	en çıkarır)
Durdurula	amayan kod (Besle	me Bekletme izinsiz)	
#3004=0	; (Besleme Bekl	letme butonunu devreye	e sokar)
Ayırma k	odu (Besleme Bekl	letme izinli)	
Aşağıdak	ki değişken #3004 bitlerinin ve bi	irleşmiş atlamaların bir h	naritasıdır.
E – Etkin	D – Devredışı		
#3004	Feed Hold (Besleme Bekletme)	İlerleme Hızı Atlama	Kesin Durma Kontrolü
0	E	E	E
1	D	E	E
2	E	D	E
3	D	D	E
4	E	E	D
5	D	E	D
6	E	D	D
7	D	D	D

#3006 Programlanabilir Durma

M00 gibi hareket eden durmalar programlanabilir - Kontrol durur ve Cycle Start (Çevrim Başlatma) tuşuna basılana kadar bekler. Cycle Start (Çevrim Başlatma) tuşuna basıldığında, program #3006'dan sonra blokla devam eder. Aşağıdaki örnekte, yorumun ilk 15 karakteri ekranın alt sol bölümünde görüntülenir.

IF [#1 EQ #0] THEN #3006=101(buradaki yorum);

#4001-#4021 Son Blok (Kipli) Grup Kodları

G kodlarının gruplaması daha verimli işlem sağlar. Benzer fonksiyonlarla G kodları genellikle aynı grup altındadır. Örneğin, G90 ve G91 grup 3 altındadır. Bu değişkenler herhangi bir 21 grubu için son veya varsayılan G kodunu kaydeder. Grup kodunu okuyarak, bir makro programı G-kodunun davranışını değiştirebilir. 4003 91'i içeriyorsa, bir makro program tüm hareketlerin mutlak olmaktansa artan olması gerektiğine karar verebilir. Sıfır grubu için birleşmiş değişken yoktur; sıfır grubu G kodları Kipsizdir.

#4101-#4126 Son Blok (Kipli) Adres Verileri

A-Z (G hariç) adres kodları kipli değerler olarak korunur. Önden okuma işlemi tarafından yorumlanan kodun son satırı tarafından gösterilen bilgi 4101'den 4126'ya kadar değişkenlerde kapsanır. Değişken numaralarının alfabetik adreslerle sayısal eşleşmesi alfabetik adresler altındaki eşleşmeyle uyuşur. Örneğin, önceden yorumlanan D adresinin değeri #4107'de bulunur ve son yorumlanan I değeri #4104'dür. Bir makroyu M-koduna adlandırırken, değişkenleri makrodaki 4101'den 4126'ya kadar olan değerleri kullanmak yerine; 1-33 değişkenlerini kullanarak makroya aktaramayabilirsiniz.

#5001-#5005 Son Hedef Konum

Son hareket bloğu son programlanan noktasına sırasıyla #5001-#5005, X, Y, Z, A, ve B değişkenlerinden erişilebilir. Değerler mevcut iş koordinat sisteminde verilir ve makine hareket ederken kullanılabilinir.

Eksen Konumu Değişkenleri

 #5021 X-ekseni
 #5022 Y-ekseni
 #5023 Z-ekseni

 #5024 A-ekseni
 #5025 B-ekseni
 #5026 C-ekseni

#5021-#5025 Mevcut Makine Koordinatı Konumu

Makine koordinatlarındaki mevcut konum sırasıyla #5021-#5025, X, Y, Z, A, ve B'den elde edilebilir. Makine hareket ederken değerler OKUNAMAZ. #5023 (Z) değeri ona uygulanan takım boyu telafisine sahiptir.

#5041-#5045 Mevcut İş Koordinatı Konumu

Mevcut iş koordinatlarındaki mevcut konum sırasıyla #5041-5045, X, Y, Z, A, ve B'den elde edilebilir. Makine hareket ederken değerler OKUNAMAZ. #5043 (Z) değeri ona uygulanan takım boyu telafisine sahiptir.

#5061-#5069 Mevcut Atlama Sinyali Konumu

Son atlama sinyalinin tetiklendiği konum sırasıyla #5061-#5069, X, Y, Z, A, B, C, U, V ve W'den elde edilebilir. Değerler mevcut iş koordinat sisteminde verilir ve makine hareket ederken kullanılabilinir. #5063 (Z) değeri ona uygulanan takım boyu telafisine sahiptir.

#5081-#5085 Takım Boyu Telafisi

Takıma uygulanan mevcut toplam takım boyu telafisi. H (#4008) artı aşınma değerindeki mevcut değer seti tarafından gösterilen takım boyu ofsetini içerir.

NOT: Eksenlerin eşlemesi x=1, y=2, ... b=5. Örneğin, Z makine koordinat sistemi değişkeni #5023 olacaktır.

#6996-#6999 Makro değişkenler kullanarak parametre erişimi

Bir programın 1 ila 1000 arasındaki parametrelere ve herhangi bir parametre bitine erişimi aşağıdaki şekilde mümkündür:

#6996: Parametre Numarası
#6997: Bit Numarası (isteğe bağlı)
#6998: 6996 değişkeninde parametre numarası değerini içerir
#6999: 6997 değişkeninde belirtilen parametre bitinin bit değerini (0 veya 1) içerir.

NOT: 6998 ve 6999 değişkenleri salt okunurdur.

Kullanım

Bir parametrenin değerine erişmek için, parametrenin sayısı 6998 makro değişkenini kullanan mevcut parametre değerinden sonraki 6996 değişkeninin içine kopyalanır, şu şekilde:

#6996=601 (Parameter 601'i tanımlar)

#100=#6998 (Parameter 601 değerini #100 değişkenine kopyalar)

Belirli bir parametre bitine erişmek için, parametre sayısı 6996 değişkenine kopyalanır ve bit sayısı 6997 makro değişkenine kopylanır. Bu parametre bitinin değeri aşağıdaki gibi 6999 makro değişkenini kullanarak bulunur:

#6996=57 (Parameter 57'i tanımlar) #6997=0 (Biti 0 olarak tanımlar) #100=#6999 (Parameter 57 0 bitini #100 değişkenine kopyalar)

NOT: Parametre bitleri 0 ila 31 arasında numaralandırılır. 32-bit parametreler ekran üzerinde, üs-solda bit 0 ve alt-sağda bit 31 ile formatlanır.

Palet Değiştirici

Paletlerin durumu, Otomatik Palet Değiştiriciden aşağıdaki değişkenler kullanılarak kontrol edilir:

#7501-#7506	Palet önceliği
#7601-#7606	Palet durumu
#7701-#7706	Parça programı numaraları paletlere atanırlar
#7801-#7806	Palet kullanım sayısı
#3028	Alıcı üzerine yüklenen palet sayısı

Ofsetler

Tüm takım iş parçası ofsetleri, koordinatların yaklaşık konumlara önceden ayarlamasına veya koordinatları atlama sinyali konumlarının ve hesaplamalarının sonucuna dayalı değerlere ayarlamasına izin veren bir makro ifadesinin içerisinde okunabilir ve ayarlanabilirler. Herhangi bir ofset okunduğunda, blok çalıştırılana kadar önden okuma sırası yorumlaması durdurulur.

#5201-#5205	G52 X, Y, Z, A, B OFSET DEĞERLERİ
#5221-#5225	G54 " " " " " " "
#5241-#5245	G55 " " " " " " "
#5261-#5265	G56 " " " " " " " "
#5281-#5285	G57 " " " " " " "
#5301-#5305	G58 " " " " " " "
#5321-#5325	G59 " " " " " " "
#7001-#7005	G110 X, Y, Z, A, B OFSET DEĞERLERİ
" "	
#7381-#7385	G129 X, Y, Z, A, B OFSET DEĞERLERİ

Değişken Kullanımı

Tüm değişkenler bir pozitif numara ile devam eden pound işareti (#) ile gösterilir. #1, #101, ve #501.

Değişkenler yüzer nokta numaraları olarak gösterilen ondalık değerlerdir. Eğer bir değişken hiç kullanılmadıysa, özel bir "tanımsız" değer alabilir. Bu hiç kullanılmadığını gösterir. Bir değişken özel değişken #0 ile tanımsız olarak ayarlanabilir. #0 tanımsız bir değere veya içinde kullanıldığı içeriğe bağlı olarak 0.0 değerine sahiptir. Değişkenlere dolaylı referanslar değişken numaralarını parantez içine alarak verilebilir: #[<Expression>]

Expression (ifade) değerlendirilir ve sonuç erişilen değişken olur. Örneğin:

#1=3; #[#1]=3.5 + #1; Bu #3 değişkenini 6.5 değerine ayarlar.

Değişkenler, "adres" A-Z harflerine karşılık geldiğinde G-kodu yerine kullanılabilir.

Blokta: N1 G0 G90 X1.0 Y0; değişkenler aşağıdaki değerlere ayarlanabilirler:

#7=0; #11=90; #1=1.0; #2=0.0;

ve aşağıdaki ile değiştirilebilir: N1 G#7 G#11 X#1 Y#2; Çalışma zamanında değişkenlerdeki değerler adres değerleri olarak kullanılır.

Adres Değişikliği

A-Z kontrol adreslerinin ayarlanmasının olağan metodu bir adresin numara ile devam etmesidir. Örneğin:

G01 X1.5 Y3.7 F20.;

G, X, Z ve F adreslerini sırasıyla 1, 1.5, 3.7 ve 20.0'ye ayarlar ve bu nedenle kontrolün doğrusal olarak hareket etmesini sağlar, G01'i her bir dakika için 20 besleme oranında X=1.5 Y=3.7 konumuna. Makro söz dizimi adres değerlerinin herhangi bir değişken veya ifade ile değiştirilmesine izin verir.

Bir önceki ifade aşağıdaki kodla değiştirilebilir:

#1=1; #2=.5; #3=3.7; #4=20; G#1 X[#1+#2] Y#3 F#4 ; A-Z (N veya O hariç) adreslerindeki izin verilen söz dizimi aşağıdaki gibidir:

<address><-><variable> (adres-değişken)</variable></address>	A-#101
<address>[<expression>] (adres-ifade)</expression></address>	Y[#5041+3.5]
<address><->[<expression>] (adres-değişken)</expression></address>	Z-[SIN[#1]]

Eğer değişkenin değeri adres aralığı ile uyuşmuyorsa, kontrol bir alarm oluşturacaktır. Örneğin, aşağıdaki kod bir aralık hatası alarmına neden olacaktır çünkü takım çapı aralığı 0-50'dir.

#1=75;

D#1;

Bir değişken veya ifade bir adres değeri yerine kullanıldığında, değer en sağdaki basamağa yuvarlanır. #1=.123456 ise, G1X#1 makine takımını X ekseni üzerinde .1235'e hareket ettirecektir. Eğer kontrol metrik modda ise, makine X ekseni üzerinde .123'e hareket ettirilecektir.

Tanımsız bir değişken bir adres değerinin yerine kullanıldığında, adres referansı reddedilir. Örneğin, eğer #1 tanımsız ise blok

G00 X1.0 Y#1;

Aşağıdaki olur

G00 X1.0.

Hiçbir Y hareketi oluşmaz.

Makro İfadeleri

Makro ifadeleri, programlayıcının kontrolü herhangi bir standart programlama dili ile aynı özelliklerle işletmesine izin veren kod satırlarıdır. Fonksiyonları, operatörleri, şartlı ve aritmetik ifadeleri, atama ifadelerini ve kontrol ifadelerini içerir.

Fonksiyonlar ve operatörler, değişkenleri ve değerleri değiştirmek için ifadelerde kullanılırlar. Fonksiyonlar programlayıcının işini kolaylaştırırken operatörler ifadeler için gereklidir.

Fonksiyonlar

Fonksiyonlar programlayıcının kullanabileceği yerleşik yordamlardır. Tüm fonksiyonlar <function_name> [argument] (<fonksiyon_adı> [argüman]) formuna sahiptir ve yüzer nokta ondalık değerlere döner. Haas kumandasında sağlanan fonksiyonlar şu şekildedir:

Fonksiyonlar	Argüman	Dönüşler	Notlar
SIN[]	Dereceler	Ondalık	Sine
COS[]	Dereceler	Ondalık	Cosine
TAN[]	Dereceler	Ondalık	Tangent
ATAN[]	Ondalık	Dereceler	Arctanjant, FANUC ATAN[]/[1] ile ayn
SQRT[]	Ondalık	Ondalık	Karekök
ABS[]	Ondalık	Ondalık	Mutlak değer
ROUND[]	Ondalık	Ondalık	Bir ondalığın yuvarlaması
FIX[]	Ondalık	Tamsayı	Kesilmiş kesir
ACOS[]	Ondalık	Dereceler	Arccosine
ASIN[]	Ondalık	Dereceler	Arcsine
#[]	Tamsayı	Tamsayı	Değişken Dolaylama
DPRNT []	ASCII text	Harici Çıktı	

Fonksiyonlarla İlgili Notlar

"Yuvarlama" fonksiyonu kullanılan kapsama bağlı olarak farklı çalışır. Aritmetik ifadelerde kullanıldığında, kesirli bölümü .5'e eşit olan veya büyük olan kesirli herhangi bir sayı bir sonraki tüm tamsayıya kadar yuvarlanır, aksi takdirde kesirli bölüm sayıdan tamamen atılır.

```
#1= 1.714 ;
#2= ROUND[#1] ; (#2, 2.0'a ayarlanır)
#1= 3.1416 ;
#2= ROUND[#1] ; (#2, 3.0'a ayarlanır)
```

Bir adres ifadesinde yuvarlama kullanıldığında, "Yuvarlama" argümanı belirli hassasiyete yuvarlanır. Metrik ve açı ebatları için, üç-konumlu hassasiyet varsayılandır. İnç için, dört-konumlu hassasiyet varsayılandır.

```
#1= 1.00333 ;
G0 X[#1 + #1 ];
(Tabla, 2.0067'ya hareket eder) ;
G0 X[ ROUND[ #1 ] + ROUND[ #1 ] ];
(Tabla, 2.0066'ya hareket eder) ;
G0 A[ #1 + #1 ] ;
(Eksen 2.007'ya hareket eder) ;
G0 A[ ROUND[ #1 ] + ROUND[ #1 ] ] ;
(Eksen 2.006'ya hareket eder) ;
D[1.67] (Çap 2 mevcut değer yapılır) ;
```

Yuvarlamaya Karşı Düzeltme

#1=3.54; #2=ROUND[#1]; #3=FIX[#1]. #2, 4'e ayarlanacaktır. #3, 3'e ayarlanacaktır.

Operatörler

Operatörler üç kategoriye ayrılabilir: Aritmetik, Mantıksal ve Boole.

Aritmetik Operatörler

Aritmetik operatörler, birli ve ikili operatörlerden oluşur. Bunlar aşağıda verilmektedir:

+	- Unary plus (Birli artı)	+1.23	
-	- Unary minus (Birli eksi)	-[COS[30]]	
+	- Binary addition (İkili sayı siste	minden toplama)	#1=#1+5
-	- Binary subtraction (İkili sayı si	steminden çıkarma)	#1=#1-1
*	 Multiplication (Çarpma) 	#1=#2*#3	
/	- Division (Bölme)	#1=#2/4	
MO	D - Remainder (Kalan)	#1=27 MOD 20) (#1, 7'yi kapsar)

Mantıksal Operatörler

Mantıksal operatörler ikili bit değerlerinde çalışan operatörlerdir. Makro değişkenleri yüzer nokta numaralarıdır. Mantıksal operatörler makro değişkenlerinde kullanıldığında, sadece yüzer nokta numarasının tamsayı bölümü kullanılır. Mantıksal operatörler şunlardır:

OR (VEYA) - mantıksal olarak OR iki değer birlikte XOR - Sadece OR iki değer birlikte

AND (VE) - Mantıksal olarak AND iki değer birlikte

Örnekler:

#1=1.0; 0000 0001	
#2=2.0; 0000 0010	
#3=#1 OR #2; 0000 0011	Burada #3 değişkeni OR işleminden sonra 3.0 içerecektir.
#1=5.0;	
#2=3.0;	
IF [[#1 GT 3.0] AND [#2 LT 10]] GOTO1	Burada kontrol blok 1'e transfer edecektir çünkü #1 GT 3.0, 1.0'a ve #2 LT 10 1.0'a değerlenir, bu nedenle 1.0 AND 1.0, 1.0'dır (TRUE (DOĞRU)) ve GOTO (GİDİN) gerçekleşir.

Mantıksal operatörler kullanırken dikkatli olmanız gerektiğini unutmayın böylece istenilen sonuç alınacaktır.

Boole Operatörler

Boole operatörler daima 1.0 'a (TRUE (DOĞRU)) veya 0.0 'a (FALSE (YANLIŞ)) değerlenecektir. Altı adet Boole operatörü vardır. Bu operatörler şartlı ifadelerle sınırlandırılmamışlardır, ancak genellikle şartlı ifadelerde kullanılırlar. Bunlar aşağıda verilmektedir:

EQ - Eşittir NE - Eşit değildir GT - Büyüktür LT - Küçüktür GE - Büyüktür veya Eşittir LE - Küçüktür veya Eşittir Aşağıdakiler Boole ve Mantıksal operatörlerin nasıl kullanılacağını gösteren dört örnektir:

Örnek	Açıklama
IF [#1 EQ 0.0] GOTO100;	#1 değişkenindeki değer 0.0'a eşitse blok 100'e atla.
WHILE [#101 LT 10] DO1;	Değişken #101, 10'den küçükse DO1END1 döngüsünü tekrarla.
#1=[1.0 LT 5.0];	Değişken #1, 1.0'a ayarlanır (DOĞRU).
IF [#1 AND #2 EQ #3] GOTO1	Değişken #1, mantıksal olarak değişken #2 ile AND'lenmişse, #3'deki değere eşittir, o zaman kontrol blok 1'e atlar.

İfadeler

İfadeler, kare parantezler "[" ve "]" tarafından çerçevelenmiş değişkenler ve operatörlerin herhangi bir sırası olarak tanımlanır. İfadelerin iki kullanımı vardır: şartlı ifadeler veya aritmetik ifadeler. Şartlı ifadeler FALSE (YANLIŞ) (0.0) veya TRUE (DOĞRU) (sıfır olmayan) değerlere dönüşür. Aritmetik ifadeler bir değeri tanımlamak için fonksiyonlarla birlikte aritmetik operatörleri kullanırlar.

Şartlı İfadeler

HAAS kumandasında, TÜM ifadeler bir şartlı değere ayarlanır. Değer ya 0.0 (FALSE (YANLIŞ)) veya sıfır olmayan bir değerdir (TRUE (DOĞRU)). İfadenin kullanıldığı bağlam, ifadenin şartlı ifade olup olmadığını tanımlar. Şartlı ifadeler, IF (EĞER) ve WHILE (İKEN) ifadelerinde ve M99 komutunda kullanılırlar. Şartlı ifadeler, TRUE veya FALSE durumun değerlendirilmesine yardımcı olmak için Boole operatörlerini kullanabilirler.

M99 şartlı şablonu HAAS kumandasına özgüdür. Makrolar olmadan, HAAS kumandasındaki M99 aynı satıra bir P kodu koyarak mevcut alt yordamdaki herhangi bir satırı şartsız olarak dallandırma yeteneğine sahiptir. Örneğin: **N50 M99 P10;** N10 satırında dallara ayrılır. Çağrılan alt programın kontrolünü geri döndürmez. Makrolar etkin hale getirildiğinde, şartsız olarak dallara ayırmak için M99 bir şartlı ifade ile kullanılabilinir. Değişken #100, 10'dan küçük olduğunda dallara ayırmak için yukarıdaki satırı aşağıdaki gibi kodlayabiliriz: **N50 [#100 LT 10] M99 P10;**

Bu durumda, sadece #100, 10'dan küçük olduğunda dallanma oluşur, aksi takdirde işlem sıradaki bir sonraki program satırı ile devam eder. Yukarıda, şartlı M99 **N50 IF [#100 LT 10] GOTO10; ile değiştirilebilir**

Aritmetik İfadeler

Bir aritmetik ifade değişkenleri, operatörleri veya fonksiyonları kullanan herhangi bir ifadedir. Bir aritmetik ifade bir değere dönüşür. Aritmetik ifadeler genellikle atama ifadelerinde kullanılırlar, ancak bunlarla sınırlı değillerdir.

Aritmetik ifade örnekleri:

#101=#145*#30; #1=#1+1; X[#105+COS[#101]]; #[#2000+#13]=0;

Atama İfadeleri

Atama ifadeleri programlayıcının değişkenleri değiştirmesini sağlar. Atama ifadesinin formatı şu şekildedir:

<expression>=<expression> (ifade-ifade)

Eşittir işaretinin sol tarafındaki ifade daima doğrudan veya dolaylı olarak, bir makro değişkenine başvurmalıdır. Aşağıdaki makro herhangi bir değere bir değişkenler sırası başlatır. Burada hem doğrudan hem de dolaylı atamalar kullanılır.

O0300	(Bir değişkenler dizisi başlatır) ;
N1 IF [#2 NE #0] GOTO2	(B=taban değişkeni) ;
#3000=1	(Taban değişkeni verilmemiş);
N2 IF [#19 NE #0] GOTO3	(S=dizinin boyutu);
#3000=2	(Dizinin boyutu verilmemiş) ;
N3 WHILE [#19 GT 0] DO1 ;	
#19=#19-1	(Azaltım sayımı) ;
#[#2+#19]=#22	(V=diziyi ayarlamak için değer) ;
END1;	
M99;	

Yukarıdaki makro değişkenlerin üç setini başlatmak için aşağıdaki gibi kullanılabilir:

```
G65 P300 B101. S20 (INIT 101..120 TO #0);
G65 P300 B501. S5 V1 (INIT 501..505 TO 1.0);
G65 P300 B550. S5 V0 (INIT 550..554 TO 0.0);
B101.'deki ondalık kesim, vb. gerekecektir.
```


Kontrol İfadeleri

Kontrol ifadeleri, programlayıcının hem şartlı hem de şartsız olarak dallara ayırmasını sağlar. Ayrıca belli bir koşula bağlı olarak kodun bir bölümünün tekrarlanması yeteneğini sağlar.

Koşulsuz Dallanma (GOTOnnn ve M99 Pnnnn)

Haas kumandasında, şartsız olarak dallara ayırmanın iki metodu vardır. Bir şartsız dal daima belirlenmiş bloğa dallanır. M99 P15, şartsız olarak blok numarası 15'e dallanacaktır. M99, makrolar yüklü olsa da olmasa da kullanılabilir ve Haas kumandasında şartsız olarak dallara ayırmanın geleneksel metodudur. GOTO15, M99 P15 ile aynı işlemi yapar. Haas kumandasında, bir GOTO (GİDİN) komutu diğer G-kodları gibi aynı satırda kullanılabilir. GOTO, M kodları gibi diğer herhangi bir komut sonrasında çalıştırılır.

Hesaplanmış Dal (GOTO#n ve GOTO [expression])

Hesaplanmış dallandırma, programın aynı alt programda kontrolü diğer bir kod satırına transfer etmesini sağlar. Program çalıştıkça, GOTO [expression] formunu kullanarak blok hesaplanabilir. Veya, GOTO#n formunda olduğu gibi, blok bir yerel değişken içerisine atanabilir.

GOTO, Hesaplanmış dal ile birleşmiş değişken veya ifade sonucunu yuvarlayacaktır. Örneğin, eğer #1, 4.49'u kapsıyorsa ve GOTO#1 çalıştırıldıysa, kontrol N4 içeren bir bloğa transfer etmeye çalışacaktır. Eğer #1, 4.5'i kapsıyorsa, o zaman işletim N5 içeren bir bloğa transfer edecektir.

Aşağıdaki kod çatısı, seri numaraları parçalara ekleyen bir program yapmak için geliştirilebilir:

O9200	(Mevcut konumda yazılı basamak.)
• •	
(D=Yazılacak ondalık basamak);	
IF [[#7 NE #0] AND [#7 GE O] AND [#7 LE 9]] GOTO99;	
#3000=1	(Geçersiz basamak)
• 1	
N99	
#7=FIX[#7]	(Herhangi bir kesirli bölümü atın)
• 1	
GOTO#7	(Şimdi basamağı yazın)
• 1	
NO	(Basamağı sıfır yapın)
M99	
;	
N1	(Basamağı bir yapın)
;	
M99	
;	
N2	(Basamağı iki yapın)
;	
;	
(vs.,)	

Yukarıdaki alt programalar, aşağıdaki çağrı ile basamak beşi yazacaksınız: G65 P9200 D5;

Donanım girdilerinin okuma sonuçlarına bağlı olarak dallandırma işlemi için ifade kullanan hesaplanmış GOTOlar kullanılabilir. Aşağıdaki buna örnek olabilir:

```
GOTO [[#1030*2]+#1031];
HAYIR (1030=0, 1031=0);
...
M99;
N1 (1030=0, 1031=1);
...
M99;
N2 (1030=1, 1031=0);
...
M99;
N3 (1030=1, 1031=1);
...
M99:
```

Ayrı girişler okunduğunda daima ya 0 ya da 1'e dönüşür. GOTO[expression], #1030 ve #1031 olmak üzere iki ayrı girişin durumuna bağlı olarak uygun kod satırına dallanacaktır.

Koşullu Dallanma (IF ve M99 Pnnnn)

Koşullu dallandırma, programın aynı alt program içinde kontrolü diğer bir kod bölümüne transfer etmesini sağlar. Koşullu dallandırma sadece makrolar etkin hale getirildiğinde kullanılabilir. Haas kumandası, şartlı dallandırmayı gerçekleştirmek için iki benzer method sağlar.

IF [<conditional expression>] GOTOn

Daha önce de belirtildiği gibi, <conditional expression> (şartlı ifade) altı Boole operatörleri EQ, NE, GT, LT, GE, veya LE'den birini kullanan herhangi bir ifadedir. İfadeyi çerçeveleyen parantezler zorunludur. Haas kumandasında, bu operatörlerin içerilmesi gerekli değildir. Örneğin: IF [#1 NE 0.0] GOTO5; ayrıca şu da olabilir: IF [#1] GOTO5;

Bu ifadede, değişken #1, 0.0 veya #0 tanımsız değerini içeriyorsa, o zaman blok 5'i dallandırma meydana gelecektir; aksi takdirde, bir sonraki blok çalıştırılacaktır.

Haas kumandasında, bir şartlı ifade ayrıca M99 Pnnnn formatı ile de kullanılabilir. Örneğin:

G0 X0 Y0 [#1EQ#2] M99 P5;

Burada, koşullu ifade sadece ifadenin M99 bölümü içindir. Makine takımı, ifade Doğru veya Yanlış olarak değerlendirilse de X0, Y0'a yönlendirilir. Sadece dal M99, ifadenin değerine göre çalıştırılır. Taşınabilirlik isteniyorsa, IF GOTO versiyonunun kullanılması önerilir.

Şartlı İşletim (IF THEN)

Kontrol ifadelerinin işletimi ayrıca IF THEN şablonu kullanılarak sağlanabilir. Format şu şekildedir:

IF [<conditional expression>] THEN <statement> (EĞER [<şartlı ifade>] O ZAMAN <ifade>);

Not: FANUC ile uyumluluğu korumak için "THEN (O ZAMAN)" dizini GOTOn ile kullanılmamalıdır.

Bu format geleneksel olarak şartlı atama ifadeleri için kullanılırlar:

IF [#590 GT 100] THEN #590=0.0;

Değişken #590, #590'nın değeri 100.0'ı aştığında sıfıra ayarlanır. Haas kumandasında, eğer bir şartlı ifade FALSE (0.0) olarak değerlendiriliyorsa, o zaman IF bloğunun kalanı reddedilir. Bu kontrol ifadelerinin de şartlandırılabileceği anlamına gelir, bu nedenle şu şekilde yazılabilir:

IF [#1 NE #0] THEN G1 X#24 Y#26 F#9;

Bu, sadece değişken #1 bir değer atamış ise doğrusal bir hareket çalıştırır. Diğer bir örnek ise:

IF [#1 GE 180] THEN #101=0.0 M99;

Eğer değişken #1 (adres A) 180'den büyük veya eşitse, değişken #101'i sıfıra ayarlayın ve alt programdan geri dönün anlamına gelir.

Aşağıda, bir değişken herhangi bir değeri içermek için başlatıldığında dallara ayıran IF ifadesine bir örnek yeralmaktadır. Aksi takdirde, işlem devam edecektir ve bir alarm oluşacaktır. Bir alarm verildiğinde program yürütmesinin durdurulduğunu hatırlayın.

N1 IF [#9NE#0] GOTO3 (F'DE DEĞER İÇİN TEST) ; N2 #3000=11(İLERLEME HIZI YOK) ; N3 (DEVAM) ;

Yineleme/Döngü (WHILE DO END)

Tüm programlama dilleri için gerekli olan, verilen belirli bir sayıda ifadelerin bir sırasını çalıştırma veya bir koşul sağlanana kadar ifadelerin bir sırasını çevrimlemek kabiliyetidir. Geleneksel G kodlaması L adresinin kullanımıyla bunu sağlar. L adresi kullanılarak, bir alt yordam defalarca çalıştırılabilir.

M98 P2000 L5;

Bir şart nedeniyle alt programın çalıştırılmasını sonlandıramadığınızda bu özellik sınırlıdır. Makrolar, WHILE-DO-END şablonu ile bu esnekliği sağlar. Örneğin:

WHILE [<conditional expression>] DOn; <statements>; ENDn; Şartlı ifade Doğru olarak değerlendirildiği müddetçe, bu DOn ve ENDn arasında ifadeleri çalıştırır. İfadedeki parantezler zorunludur. İfade Yanlış olarak değerlendirildiğinde, ENDn sonrasındaki blok çalıştırılır. WHILE, WH olarak kısaltılabilinir. İfadenin DOn-ENDn bölümü uyumlu bir çifttir. n'nin değeri 1-3'dür. Bunun anlamı, her bir alt program için üç kümelenmiş döngüden daha fazla olamayacağıdır. WHILE döngülerinin kümelenmesine kullanılabilecek en iyi örnek bir matris içerisinde tanımlamaktır.

```
#101= 3;
#102= 4;
G0 X#101 Y4. ;
F2.5;
WH [#101 GT 0] DO1;
#102= 4;
WH [#102 GT 0] DO2;
G81 X#101 Y#102 Z-0.5;
#102= #102 - 1;
END2;
#101= #101 - 1;
END1;
;
M30;
```

Bu program bir 3 x 4 matris delik deseni deler.

WHILE ifadelerinin kümelenmesinin sadece üç seviye olabilmesine rağmen, herbir alt programın üç kümelenme seviyesi olduğu için aslında bir sınırlama yoktur. 3'den daha fazla kümelenmeye ihtiyaç olursa, sınırlamayı aşmak için, kümelenmenin en az üç seviyesini içeren segment bir alt program içine konabilir.

Eğer iki ayrı WHILE döngüsü bir alt yordam içindeyse, aynı kümelenme endeksini kullanabilirler. Örneğin:

```
#3001=0 (500 MİLİ SANİYE BEKLEYİN) ;
WH [#3001 LT 500] DO1 ;
END1;
<Other statements> (diğer ifadeler)
#3001=0 (300 MİLİ SANİYE BEKLEYİN) ;
WH [#3001 LT 300] DO1 ;
END1;
```

DO-END tarafından kapsanan bir bölümden dışarı çıkmak için GOTO'yu kullanabilirsiniz, ancak GOTO'yu içine girmek için kullanamazsınız. GOTO'yu kullanarak bir DO-END iç bölümünün etrafına girilmesine izin verilir.

WHILE ve ifadeyi eleyerek sonsuz bir döngü çalıştırılabilir. Bu nedenle,

DO1; <statements> (ifadeler) END1; RESET (Sıfırlama) düğmesine basılana kadar çalışır. DİKKAT! Aşağıdaki kod karmaşık olabilir: WH [#1] D01;

END1;

Bu örnekte, hiçbir "Then (O zaman)" bulunamadığı alarmına neden olur; "Then" D01'e başvurur. D01 (sıfır)'i, D01 (O harfi) şeklinde değiştirin.

G65 Makro Alt Program Çağrısı

G65, argümanları bir alt programa atama özelliği ile alt programı çağıran bir komuttur. Format şu şekildedir.

G65 Pnnnn [Lnnnn] [arguments];

Kare parentez içinde italik harfle yazmak isteğe bağlıdır. G65 komutu, kontrol hafızasında mevcut olan bir program numarasına karşılık gelen bir P adresine gereksinim duyar. L adresi kullanıldığında, makro çağrısı belirlenmiş bir sayı kadar tekrar edilir. Örnek 1'de, alt yordam 1000, şartlar alt yordama atanmadan bir kere çağrılır. G65, M98 çağrılarına benzer ancak aynı değildir. G65 çağrıları 9 defaya kadar kümelenebilir, program 1 can call program 2, program 2 can call program 3 ve program 3 can call program 4 şeklinde.

Örnek 1:	
G65 P1000;	(Bir makro olarak alt program 1000'i çağırın)
M30;	(Program durma)
O1000;	(Makro Alt Program)

M99; (Makro Alt Programından Geri Dönüş)

Örnek 2'de, alt program 9010, eğimi G65 komut satırında geçirilen X ve Y argümanları tarafından tanımlanmış olan bir satır boyunca bir delik sırası delmek için tasarlanmıştır. Z delme derinliği Z olarak geçirilir, ilerleme hızı F olarak geçirilir, ve delinecek delik sayısı T olarak geçirilir. Makro alt programı çağırıldığında delik sırası mevcut takım konumundan başlayarak delinir.

Örnek 2:

G00 G90 X1.0 Y1.0 Z.05 S1000 M03; G65 P9010 X.5 Y.25 Z.05 F10. T10;	(Takımı konumlandırır) (9010'u çağırır)
G28;	
M30;	
O9010;	(Köşegen delik deseni)
F#9;	(F=İlerleme hızı)
WHILE [#20 GT 0] DO1;	(Tekrar T defa)
G91 G81 Z#26;	(Z derinliğine delme)
#20=#20-1;	(Azaltım sayacı)
IF [#20 EQ 0] GOTO5;	(Bütün delikler delindi)
G00 X#24 Y#25;	(Eğim boyunca hareket)
N5 END1;	
M99;	(Çağırıcıya dönüş)

Adlandırma

Adlandırma, bir G-kodu veya M-kodunun G65 P##### dizisine atanması anlamına gelir. Örneğin, Örnek 2'de bunu yazması daha kolay olacaktır: G06 X.5 Y.25 Z.05 F10. T10;

Adlandırırken, değişken bir G-kodu ile geçilebilir; değişken bir M-Kodu ile geçilemez.

Burada, kullanılmamış bir G kodu değiştirilmiştir, G65 P9010 için G06. Önceki bloğun çalışması için, alt yordam 9010' ile bağlantılı parametre 06'ya (parametre 91) ayarlanmalıdır. G00, G65, G66, ve G67'nin adlandırılamayacağını unutmayın. 1 ila 255 arasındaki tüm kodlar adlandırılmak için kullanılabilir.

9010'dan 9019'a kadar olan program numaraları G kodu adlandırması için ayrılmıştır. Aşağıdaki tablo makro alt program adlandırılması için ayrılan HAAS parametrelerini listeler.

Haas Parametresi	O Kodu	Haas Parametresi	M Makro Caŭrisi
91	9010	81	9000
92	9011	82	9001
93	9012	83	9002
94	9013	84	9003
95	9014	85	9004
93	9015	86	9005
97	9016	87	9006
98	9017	88	9007
99	9018	89	9008
100	9019	90	9009

G Kodu Adlandırması

M Kodu Adlandırması

Adlandırılmış bir parametrenin 0'a ayarlanması bağlantılı alt programının adlandırılmasını etkisiz kılar. Eğer adlandırılmış bir parametre bir G-koduna ayarlanırsa ve bağlantılı alt program hafızada değilse, o zaman bir alarm verilir.

Harici Cihazlarla İletişim - DPRNT[]

Makrolar, bilgisayara bağlı olan ekipmanlarla iletişime ek yetenekler sağlar. Kullanıcı destekli cihazlar ile parçaların sayısallaştırılması, çalışma zamanı kontrol raporu sağlanması veya kontrollerin senkronize edilmesi işlemleri yapılabilir. Bunun için sağlanan komutlar POPEN, DPRNT[] ve PCLOS'dur.

İletişim Hazırlayıcı Komutlar

POPEN ve PCLOS, Haas frezesi üzerinde gerekli değildir. Farklı kontrollerden programların Haas kumandasına gönderilebilmesi için ilave edilmiştir.

Formatlı Çıktı

DPRNT ifadesi programlayıcıya seri porta formatlı metin gönderme özelliği sağlar. Herhangi bir metin ve değişken seri porta yazdırılabilir. DPRNT ifadesi formu şu şekildedir: DPRNT [<text> <#nnnn[wf]>...];

DPRNT bloktaki tek komut olmalıdır. Bir önceki örnekte, <text> (metin) A'dan Z'ye herhangi bir harf veya karakter (+,-,/,*, ve boşluk) olabilir. Yıldız işareti (*) çıktı olduğunda, bir boşluğa dönüştürülür. <#nnnn[wf]> bir format ile devam eden bir değişkendir. Değişken numarası herhangi bir makro değişkeni olabilir. [wf] formatı gereklidir ve kare parantez içinde iki basamaktan oluşur. Makro değişkenlerin, bir tam bölümlü ve bir kesirli bölümlü gerçek sayılar olduğunu hatırlayın. Formattaki ilk basamak, tüm bölüm için çıktıdaki toplam ayrılan yeri gösterir. İkinci basamak, kesirli bölüm için toplam ayrılan yeri gösterir. Çıktı için ayrılan toplam yer sıfıra eşit veya 8'den büyük olamaz. Bu nedenle aşağıdaki formatlar kurallara uygun değildir: [00] [54] [45] [36] /* kurallara uygun formatlar değil */

Bir ondalık kesim tam ve kesirli bölüm arasında yazdırılır. Kesirli bölüm en sağdaki basamağa yuvarlanır. Kesirli bölüm için sıfır konumları ayrıldığında, hiçbir ondalık kesim yazdırılmaz. Kesirli bölüm varsa takip eden sıfırlar basılır. Tam bölüm için, bir sıfır kullanılsa da en az bir yer ayrılır. Tam bölümün değeri ayrılandan daha az basamağa sahipse, baştaki boşluklar çıktıdır. Tam bölümün değeri ayrılandan daha çok basamağa sahipse, bu numaraların yazdırılması için alan genişletilir.

Her DPRNT bloğundan sonra bir satır başı komutu gönderilir.

DPRNT[] Örnekleri

Kod	Çıkış
N1 #1= 1.5436 ;	
N2 DPRNT[X#1[44]*Z#1[03]*T#1[40]] ;	X1.5436 Z 1.544 T 1
N3 DPRNT[***MEASURED*INSIDE*DIAMETER***];	MEASURED INSIDE DIAMETER (ÖLÇÜLEN İÇ ÇAP)
N4 DPRNT[] ;	(metin yok, sadece bir satır başı komutu)
N5 #1=123.456789 ;	
N6 DPRNT[X-#1[25]] ;	X-123.45679 ;

İşletim

DPRNT ifadeleri blok yorumlama zamanında işletilir. Bu, programlayıcının programda DPRNT ifadelerinin geçtiği yerlere, özellikle amaç çıktı almak ise, dikkat etmesi gerektiği anlamına gelir.

G103, önden okumayı sınırlamak için yararlıdır. Önden okuma yorumlamasını bir bloğa sınırlamak istiyorsanız, programınızın başlangıcına aşağıdaki komutu yazmalısınız: (Bu aslında bir iki bloklu önden okumaya neden olur.)

G103 P1;

Önden okuma sınırlamasını iptal etmek için, komutu G103 P0 olarak değiştirin. G103, kesici telafisi aktif olduğunda kullanılamaz.

Düzenleme

Hatalı yapılandırılmış veya hatalı yerleştirilmiş makro ifadeleri bir alarm oluşturacaktır. İfadeleri düzeltirken dikkatli olun; parantezler dengeli olmalıdır.

DPRNT[] fonksiyonu daha çok bir yorum gibi düzeltilir. Silinebilir, tam bir öğe olarak taşınabilir, veya parantez içindeki tek öğeler düzeltilebilir. Değişken referansları ve format ifadeleri tümüyle değiştirilmelidir. [24]'ü [44] olarak değiştirmek istiyorsanız, [24] seçilecek şekilde oku yerleştirin, [44] girin ve yazma tuşuna basın. Uzun DPRNT[] ifadelerinde dolaşmak için el kumandasını kullanabileceğinizi unutmayın.

İfadelerle birlikte adresler oldukça karmaşık olabilir. Bu durumda, alfabetik adres ayrı olur. Örneğin, aşağıdaki blok X içinde bir adres ifadesi içerir:

G1 G90 X [COS [90]] Y3.0; DOĞRU

Burada, **X** ve parantezler ayrı yeralır ve tek başına düzeltilebilen öğelerdir. Tüm ifadenin silinmesi ve bir yüzer nokta sabiti ile değiştirilmesi düzeltme sırasında mümkündür.

G1 G90 X 0 Y3.0 ; YANLIŞ

Yukarıdaki blok çalışma zamanında bir alarma neden olacaktır. Doğru form aşağıdaki gibidir:

G1 G90 X0 Y3.0; DOĞRU

X ve Sıfır (0) arasında boşluk olmadığına dikkat edin. Bir harf karakterini tek başına gördüğünüzde bunun bir adres ifadesi olduğunu UNUTMAYIN.

Fanuc-Tipi Makro Özellikleri Haas CNC Kumandasında Mevcut Değildir

Bu bölüm, Haas kumandasında mevcut olmayan FANUC makro özelliklerini listeler.

M Adlandırması G65 Pnnnn'yi Mnn PROGS 9020-9029 ile değiştirir.

G66	Her hareket bloğunda kipli çağrısı
G66.1	Her hareket bloğunda kipli çağrısı
G67	Kipli iptali
M98	Adlandırma, T kodu PROG 9000, VAR #149, etkin bit
M98	Adlandırma, S Kodu PROG 9029, VAR #147, etkin bit
M98	Adlandırma, B Kodu PROG 9028, VAR #146, etkin bit
SKIP/N	N=19
#3007	Herbir eksende bayrak üzerinde ikiz görüntü

#4201-#4320	Mevcut blok kipli verileri
#5101-#5106	Mevcut servo sapması
Görüntüleme Amacı için Değişken Adları	
ATAN []/[]	Arctanjant, FANUC versiyonu
BIN []	BCD'den BIN'e dönüştürme
BCD []	BIN'den BCD'ye dönüştürme
FUP []	Kesilmiş kesir tavanı
LN []	Doğal logaritma
EXP[]	Taban E Üst alma
ADP []	Değişkeni tüm sayıya yeniden ölçeklendirin
BPRNT []	

Birkaç mevcut olmayan FANUC makro özelliklerinin bazı sonuçlarını elde etmek için aşağıdaki alternatif bir metod olarak kullanılabilir.

GOTO-nnnn

Tek N adres kodları kullanıyorsanız, negatif yönde, örneğin bir programdan geriye ilerlemek için bir blok araması yapmak gerekli değildir.

Yorumlanan mevcut blokdan başlayarak bir blok araması yapılır. Programın sonuna ulaşıldığında, mevcut blokla karşılaşana kadar arama programın başından itibaren devam eder.

Görsel Hizli Kod

Görsel Hızlı Kod (Visual Quick Code (VQC))'u başlatmak için MDI/DNC'ye, ardından PROGRM CONVRS tuşuna basın. Sekmeli menüden VQC'yi seçin.

Bir Kategorinin Seçilmesi

İstenilen parçaya tanımı çok yakından uyan parça kategorisini seçmek için ok tuşlarını kullanınız ve Write'a (Yaz) basınız. O kategorideki parçaların bir resim grubu ekranda görünecektir.

Cıvata Deliği Dairesi Veri Giriş Ekranı

VQC Cıvata Deliği Dairesi Kategorisi

Bir Parça Şablonunun Seçilmesi

Sayfa üzerinde bir şablon seçmek için ok tuşlarını kullanınız. Write'a (Yaz) basılması parçanın bir dış hattı görüntüsünü verecek ve seçilen parçayı imal etmek üzere programcının değerleri girmesi beklenecektir.

Verilerin Girilmesi

Kumanda, programcıyı seçilen parça hakkında bilgi almak üzere uyaracaktır. Bilginin girilmesinin ardından kumanda kullanıcıya G-kodunun yerleştirileceği yeri soracaktır:

1) Bir Programın Seçilmesi/Yaratılması

Kullanıcının bir program adı seçmesi uyarısını yapan bir pencere açılacaktır. İstenilen adı seçiniz ve Write'a (Yaz) basınız. Bu işlem yeni kod satırlarını seçilen programa ilave edecektir. Eğer kod programda daha önceden varsa, VQC, kod satırlarını programın başlangıcına, mevcut kodun önüne girecektir. Kullanıcı, bir program adı girerek ve Write'a (Yaz) basarak yeni bir program Yaratma (Create) opsiyonuna da sahiptir, bu işlem kod satırlarını seçilen programa ilave edecektir.

2) Add to Current Program (Mevcut Programa Ekle) – VQC tarafından üretilen kod imleçten sonra ilave edilecektir.

- 3) MDI Kod, MDI'ya çıkarılacaktır. Not: MDI'da bulunanların üzerine yazılacaktır.
- 4) Cancel (İptal) Pencere kapanacak ve program değerleri ekranda gösterilecektir.

NOT: Program, düzenleme için Düzenleme (Edit) Modunda da mevcuttur. Grafik modda çalıştırarak programı kontrol etmek tavsiye edilir.

ALT PROGRAMLAR

Alt programlar genellikle bir programda birkaç kez tekrarlanan komut dizileridir. Ana programda komutları birçok kez tekrarlamak yerine, ayrı bir programda alt programlar yazılır. Ana program, bu durumda alt programı "çağıran" basit bir komut içerir. Bir alt program, bir M97 ve bir P adresi kullanılarak çağırılır. P kodu, çağrılacak alt programın bir M30'dan sonra bulunan dizi numarası (Onnnn) ile aynıdır. Bir alt program, bir M98 ve bir P adresi kullanılarak çağırılır. Bir M98 ile birlikte P adresi program numarası içindir.

Korunmalı Çevrimler alt programların en çok kullanımıdır. Deliklerin X ve Y konumları ayrı bir programa yerleştirilir ve daha sonra çağrılır. Her bir takım için X, Y konumlarını bir kere yazmak yerine, herhangi bir sayıdaki takım için X, Y konumları bir kere yazılır.

Alt programlar bir L veya tekrarlama sayacı içerebilirler. Eğer bir L mevcutsa, ana program bir sonraki blokla devam etmeden önce alt programın çağırılması o kadar sayıda tekrar edilir.

Harici Al Program

Harici bir alt program, ana program tarafından birkaç kez referans verilen ayrı bir programdır. Yerel alt programlar bir M98 ve alt programın program sayısına denk gelen bir Pnnnnn kullanılarak komut edilir (çağrılır).

Alt Program

Harici Alt Program Örneği O00104 (bir M98 ile alt program) T1 M06 G90 G54 G00 X1.5 Y-0.5 S1406 M03 G43 H01 Z1. M08 G81 G99 Z-0.26 R0.1 F7. M98 P105 (Alt-Program O00105'i çağırır)

T2 M06 G90 G54 G00 X1.5 Y-0.5 S2082 M03 G43 H02 Z1. M08 G83 G99 Z-.75 Q0.2 R0.1 F12.5 M98 P105 (Alt-Program O00105'i çağırır)

T3 M06 G90 G54 G00 X1.5 Y-0.5 S750 G43 H03 Z1. M08 G84 G99 Z-.6 R0.1 F37.5 M98 P105 (Alt-Program O00105'i çağırır) G53 G49 Y0. M30 (Program Sonu) O00105 X.5 Y-.75 Y-2.25 G98 X1.5 Y-2.5 G99 X3.5 X4.5 Y-2.25 Y-.75 X3.5 Y-.5 G80 G00 Z1.0 M09 G53 G49 Z0. M05 M99

Yerel Alt Program Örneği

Yerel bir alt program, ana program tarafından birkaç kez referans verilen, ana programdaki kodun bir bloğudur. Yerel alt programlar bir M97 ve yerel alt programın N satır sayısına denk gelen bir Pnnnnn kullanılarak komut edilir (çağrılır).

Yerel alt program formatı, bir M30 ile ana programı bitirmek ve M30'dan sonra yerel alt programların girilmesidir. Her bir alt program, programı ana programdaki bir sonraki satıra gönderecek olan başlangıçta bir N satırına ve sonda bir M99 satırına sahip olmalıdır.

Yerel Alt Program Örneği

O00104 (bir M97 ile yerel alt program) T1 M06 G90 G54 G00 X1.5 Y-0.5 S1406 M03 G43 H01 Z1. M08 G81 G99 Z-0.26 R0.1 F7. M97 P1000 (Yerel alt programı satır N1000'da çağırın) T2 M06 G90 G54 G00 X1.5 Y-0.5 S2082 M03 G43 H02 Z1. M08 G83 G99 Z-.75 Q0.2 R0.1 F12.5 M97 P1000 (Yerel alt programı satır N1000'da çağırın) T3 M06 G90 G54 G00 X1.5 Y-0.5 S750 G43 H03 Z1. M08 G84 G99 Z-.6 R0.1 F37.5 M97 P1000 (Yerel alt programı satır N1000'da çağırın) G53 G49 Y0. M30 (Program Sonu) N1000 (Yerel alt programa başlayın) X.5 Y-.75 Y-2.25 G98 X1.5 Y-2.5 G99 X3.5 X4.5 Y-2.25 Y-.75 X3.5 Y-.5 G80 G00 Z1.0 M09 G53 G49 Z0. M05 M99

Alt Program Korunmalı Çevrim Örneği

O1234 (Korunmalı Çevrim Örnek Program) T1 M06 G90 G54 G00 X.565 Y-1.875 S1275 M03 G43 H01 Z.1 M08 G82 Z-.175 P.03 R.1 F10. M98 P1000 G80 G00 Z1.0 M09 T2 M06 G00 G90 G54 X.565 Y-1.875 S2500 M03 G43 H02 Z.1 M08 G83 Z-.720 Q.175 R.1 F15. M98 P1000 G00 G80 Z1.0 M09 T3 M06 G00 G90 G54 X.565 Y-1.875 S900 M03 G43 H03 Z.2 M08 G84 Z-.600 R.2 F56.25 M98 P1000 G80 G00 Z1.0 M09 G28 G91 Y0 Z0 M30

Alt Program O1000 (X,Y Konumları) X 1.115 Y-2.750 X 3.365 Y-2.875 X 4.188 Y-3.313 X 5.0 Y-4.0 M99

Çoklu Montaj Tertibatlarında Alt Programlar

Ayrıca alt programlar da makine içinde farklı X ve Y konumlarında aynı parçayı keserken faydalı olabilirler. Örneğin, tabla üzerine bağlanmış altı mengene vardır. Bu mengenelerden her biri yeni bir X, Y sıfırı kullanır. G54 ile G59 iiş parçası ofsetlerini kullanarak programda referans edilir. Her bir parça üzerinde sıfır noktasını saptamak için bir uç bulucu veya bir komporatör kullanın. Her bir X, Y konumunu kaydetmek için iş koordinat ofseti sayfasında parça sıfır ayarı tuşunu kullanın. Her bir iş parçası için X, Y sıfır konumu ofset sayfasında olduğunda, programlama başlayabilir.

Şekil, bu ayarın makine tablasında nasıl görüleceğini gösterir. Örneğin, bu altı parçadan her birinin merkezden delinmesi gerekecektir, X ve Y sıfır.

Ana Program O2000 T1 M06 G00 G90 G54 X0 Y0 S1500 M03 G43 H01 Z.1 M08 M98 P3000 G55 M98 P3000 G56 M98 P3000 G57 M98 P3000 G58 M98 P3000G59 M98 P3000 G00 Z1.0 M09 G28 G91 Y0 Z0 M30

Alt Program O3000 X0 Y0 G83 Z-1.0 Q.2 R.1 F15. G00 G80 Z.2 M99

4. VE 5. EKSEN PROGRAMLAMA

VR-11 Freze ve Haas TRT 210'da eksen hareketi

Beş-Eksenli Programlar

Çoğu beş-eksen programları oldukça karmaşıktır ve bir CAD/CAM paketi kullanılarak yazılmalıdır. Makinenin salınım uzunluğunun ve takım boyunun belirlenmesi ve bu programlara girilmesi gerekir.

Her makine farklı bir salınım uzunluğuna sahiptir. Bu, iş mili kafasının dönme ekseninden ana takım tutucunun alt yüzeyine olan mesafedir. Salınım uzunluğu Ayar 116'da bulunabilir ve aynı zamanda 5-eksenli bir makine ile sevk edilen ana takım tutucuya da markalanmıştır.

Bir programı düzenlerken, her bir takım için gösterge boyunun belirlenmesi gereklidir. Gösterge boyu, ana takım tutucunun alt flanşından takımın ucuna olan mesafedir. Bu mesafe, tabla üzerine ana takım tutucunun alt yüzeyini gösteren, manyetik gövdeli gösterge yerleştirerek ve bu noktayı kontrolde Z0 olarak tespit ederek hesaplanabilir. Sonra her bir takımı takın ve takım ucundan Z0'a olan mesafeyi hesaplayın; bu gösterge boyudur.

Toplam uzunluk, iş mili kafasının dönme merkezinden takımın ucuna olan mesafedir. Takım boyu ile salınım uzunluğunu toplayarak hesaplanabilir. Bu sayı, değeri hesaplamaları için kullanacak CAD/CAM programına girilir.

Ofsetler

İş parçası ofseti ekranı, Page Up (Önceki Sayfa) butonuna basılarak ofset ekranında bulunur. G54'den G59'a veya G110'dan G129'a kadar olan ofsetler, Part Zero (Parça Sıfırı) butonu kullanılarak ayarlanabilir. Eksenleri, iş parçasının çalışma sıfırı noktasına konumlayın. İmleci kullanarak uygun ekseni ve iş numarasını seçin. Part Zero Set (Parça Sıfır Ayarı) butonuna basın böylece mevcut makine konumu otomatik olarak o adrese yüklenecektir. Bu yalnızca, iş parçası sıfırı ofsetleri ekranı seçili iken olur. Sıfırdan farklı bir Z iş parçası ofseti girilmesinin, otomatik olarak girilen takım boyu ofsetinin çalışmasına etki edeceğine dikkat edin.

İş parçası koordinat değerleri genellikle pozitif sayılar olarak girilir. İş parçası koordinatları, tabloya yalnızca sayı olarak girilir. G54'e X2.00'lik bir X değerini girmek için, imleci X kolonuna getirin ve 2.0 girin.

Beş-eksen Programlama Notları

CAD/CAM sisteminde geometri çözünürlüğünün çaprazlamasına sıkı bir senkronizasyon kesimi kullanmak düzgün akışlı ana hatlar ve daha hassas bir parça elde edilmesini sağlayacaktır.

Makinenin bir yaklaşma vektörüne konumlandırılması yalnızca iş parçasının üstünde veya yanında emniyetli bir mesafede yapılmalıdır. Hızlı modda iken eksenler proglamlanan konuma farklı zamanlarda gelecektir; hedeften en kısa mesafedeki eksen ilk önce ve en uzun mesafedeki en sonra gelecektir. Yüksek bir ilerleme hızı, bir çarpma ihtimalini önleyerek, eksenleri komut verilen konuma aynı anda gelmeye zorlayacaktır.

G Kodları

Beş-eksen programlama inç (G20) veya metrik (G21) seçilmesinden etkilenmez; A ve B eksenleri daima derece cinsinden programlanır.

Eş zamanlı 5-eksen hareket için, G93 ters zaman yürürlükte olmalıdır. G93 modunda, azami ilerleme hızı bütün eksen hareketlerinin bir blokluk kod içinde birleştirilmesinden oluşmaktadır. Sınır, kontrol tarafından ve bir blokluk kod içerisinde bütün eksenler için programlanan enkoder adımlarına bakılarak belirlenmektedir.

Mümkünse son işlemciyi (CAD/CAM yazılımı) sınırlayın; G93 modundaki azami hız dakikada 32 derecedir. Bu daha düzgün hareketle sonuçlanacaktır, eğilmiş duvarlar etrafında dönerken gerekli olabilir.

M Kodları

Önemli! 5-eksenli olmayan bir haraket yaparken A/B frenlerinin uygulanmış olması önemle tavsiye edilir. Frenler uygulanmadan kesme yapmak, dişli takımlarında haddinden fazla aşınmaya yol açabilir.

M10/M11 A-ekseni frenini çalıştırır/ayırır

M12/M13 B-ekseni frenini çalıştırır/ayırır

4 yada 5 eksenli bir kesme işlemi yapılırken, makine bloklar arasında duraklayacaktır. Duraklama, A ve/veya B ekseni frenlerinin bırakılmasından dolayıdır. Bu beklemenin önlenmesi ve programın daha düzgün yürütülmesi için, G93'den hemen önce bir M11 ve/veya M13 programlayın. M-kodları frenleri ayıracaktır, bunun sonucu daha düzgün bir hareket ve kesintisiz hareket akışıdır. Frenler hiçbir zaman yeniden çalıştırılmazlarsa, sınırsız olarak devre dışı kalacaklarını unutmayın.

Ayarlar

4. ve 5. eksenleri programlamak için bir takım ayarlar kullanılır. 4. eksen için ayarlar 30, 34, 48 ve 5. eksen için ayarlar 78, 79, 80'e bakınız.

5-eksen kesme işleminde ayar 85, .0500'e ayarlanmalıdır. .0500'den daha düşük ayarlar, makineyi tam durmaya daha çok yaklaştıracak ve düzensiz harekete yol açacaktır.

Eksenleri yavaşlatmak için, program içinde G187 de kullanılabilir.

Dikkat! 5-eksen modunda kesme yaparken, takım boyu ofseti (H-kodu) iptal edilmezse yetersiz konumlandırma ve hareket taşması olabilir. Bu sorundan kurtulmak için, takım değiştirmeden sonraki ilk bloklarda G90 G40, H00 ve G49 kullanın. 3-eksen ve 5-eksen programlama karışık kullanılırken bu sorun meydana gelebilir; bir programı yeniden başlatırken veya yeni bir iş başlatırken ve takım boyu ofseti hala devrede iken.

İlerleme Hızları

Her 4 ve/veya 5 eksen kod satırında bir ilerleme hızı komutu verilmelidir. Delme yaparken ilerleme hızını 75 inç/dk'dan daha aza sınırlayın. 3-eksen çalışmada bitirme işlemi için önerilen ilerleme, bitirme işlemi için en az .0500 inç ila .0750 inç çapak kalacak şekilde 50 ila 60 inç/dk'yı geçmemelidir.

Hızlı hareketlere izin verilmez; hızlı hareketler, deliklere giriş ve çıkışlar (tam geri çekilmeli kademeli delik delme çevrimi) desteklenmez.

Eşzamanlı 5-eksen hareket programlarken, daha az malzeme toleransı gerekir ve daha yüksek ilerleme hızlarına izin verilebilir. Bitirme toleransı, kesici boyu ve kesilen profil tipine bağlı olarak, daha yüksek ilerleme hızları mümkün olabilir. Örneğin, kalıp hatlarını veya uzun akışlı konturları işlerken, ilerleme hızları 100 inç/ dk'yı geçebilir.

4. ve 5. Eksenlerde Elle Kumanda

Beşinci eksen için elle kumanda hareketinin bütün safhaları, diğer eksenlerde olduğu gibi çalışır. Eksen A ile eksen B arasında elle kumanda seçme yöntemi bu kuralın dışındadır.

'+A' ve '-A' tuşları, basıldıklarında, elle kumanda için varsayılan olarak A eksenini seçecektir. Shift butonuna ve sonra ya '+A' ya da '-A' tuşuna basarak **B** ekseni elle kumanda için seçilebilir.

EC-300: Elle kumanda modu A1 ve A2'yi gösterir, A1'i elle kumanda etmek için "A" ve A2'yi elle kumanda etmek için Shift (Üst karakter) "A" kullanır.

EC-300 Palet ve 4 üncü eksen İşlemi

Talaş kaldırma bölgesindeki döner tabla, daima A ekseni olarak görünür ve işlem yapar. Palet 1 üzerindeki döner eksen, "A1" ve palet 2 üzerindeki diğer eksen "A2" olarak adlandırılır. İşlem örnekleri:

A1 eksenini elle kumanda etmek için "A1" girin ve "HAND JOG (Elle kumanda kolu)" tuşuna basın.

Tuşlarla elle kumanda etmek için, A1 eksenini elle kumanda etmek üzere +/-A elle kumanda butonlarını ve A2 eksenini elle kumanda etmek üzere +/-B butonlarını kullanın.

Palet No.2'deki A eksenini sıfıra döndürmek için, "A2" girip ZERO SINGLAXIS tuşuna basın.

Aynalama Özelliği: A eksenini aynalamak için G101 kullanılırsa, o zaman aynalama her iki A ekseni için de aktif olur. Palet No.1 talaş kaldırma bölgesinde olduğunda, ekranın altında A1-MIR görüntülenecektir. Palet No.2 makinenin içinde olduğunda, A2-MIR görüntülenecektir. Aynalama Ayarlarının davranışı farklıdır, eğer Ayar 48 Ayna Görüntüsü A-Ekseni AÇIK ise, sadece palet No.1'deki A ekseni aynalanır ve A1-MIR mesajı görüntülenir.

Eğer ayar 80 (parametre 315, bit 20 MAP 4TH AXIS 1 ise, ayar 80'in ismi Ayar 48'inki ile aynıdır, örn. Mirror Image A-Axis (Ayna Görüntüsü A-Ekseni)) AÇIK ise, palet No.2 üzerindeki A-ekseni için aynalama aktif olacaktır. Palet No.2 frezenin içinde olduğunda, A2-MIR görüntülenecektir.

Çarpma Kurtarma Prosedürü

Eğer makine, beş-eksenli bir parçayı işlerken çarparsa, kapsanan açılar yüzünden takımı parçadan kurtarmak çoğunlukla zor olabilir. Hemen Recover (Kurtarma) tuşuna basmayın veya şalteri kapatmayın. Takım kesmekte iken iş milinin de durduğu bir çarpmadan kurtulmak için, Vektör Elle Kumanda özelliğini kullanarak iş milini geri çekin. Bunu yapmak için, klavyedeki "V" harfine basın, "Handle Jog (Elle Kumanda Kolu)" tuşuna basın ve o eksen boyunca hareket etmek için elle kumanda kolunu kullanın. Bu özellik, A ve/veya B ekseni ile belirlenen her eksen boyunca harekete imkan tanıyacaktır.

Vektör Elle Kumanda özelliği, bir çarpma veya alarm durumu sonucu sıra dışı bir durumda operatörün kesici takımı iş parçasından kurtarabilmesi için tasarlanmıştır.

Vektör elle kumanda modunda G28 kullanılamaz; tek eksen seçerken sadece X, Y, Z, A ve B için kullanılabilir.

Bir kesme işlemi sırasında elektrik kesilirse, kontrol bir referans noktası gerektirdiğinden vektör elle kumanda işe yaramaz. Takımı iş parçasından kurtarmanın başka yolları gerekecektir.

Takım çarptığında bir kesme işleminde değilse, Recover (Kurtarma) butonuna basın ve ekranda görünen sorulara cevap verin. Recover (Kurtarma) tuşuna basıldığında iş mili kafası, takımı geri çekmek için A, B ve Z-eksenlerini eş zamanlı olarak hareket ettirecektir. Eğer takım açılı bir kesme işleminde ise, bu tuşa basıldığında çarpacaktır.

Opsiyonel bir Dördüncü Eksen

Haas frezeye döner bir tabla ilave ederken, ayar 30 ve 34'ü belirli döner tabla ve halen kullanılmakta olan parça çapına ayarlayın. Uyarı: Doğru fırçalı veya fırçasız döner ayarın frezeye takılmakta olan gerçek ürüne uygun düşmemesi motor hasarına yol açabilir. Ayarlardaki "B", fırçasız bir dönme hareketli ürünü gösterir. Fırçasız endeksleyiciler, tabladan gelen iki kabloya ve freze kontrol ünitesinde iki konektöre sahiptir.

Parametreler

İndeksleyiciden belirli bir performans alabilmeniz için nadir durumlarda bazı parametrelerin değiştirilmesi gerekebilir. Bu işlemi, değiştirilecek parametrelerin bir listesi olmadan yapmayın. (İndeksleyici içinde parametre listesi yoksa, değişiklik gerekli değildir. PARAMETRELERİ DEĞİŞTİRMEYİN. Bu garantinizi geçersiz kılacaktır.)

Dördüncü veya beşinci eksen indeksleyici için parametreleri değiştirmek üzere: E-stop (Acil Durdurma) butonuna basın. Parametre kilidini kapatın (Ayar 7). Setting (Ayarlar) butonuna basarak ayarlar sayfasına gidin. "7" girin ve aşağı oka basın; bu, ayar 7'ye atlayacaktır. İmleç Ayar 7 üzerinde iken, sağ veya sol ok tuşunu kullanarak "Off (Kapalı")'u seçin ve parametre kilidini kapatmak için Write (Yaz) butonuna basın. Parametre sayfasına gidin ve değiştirilecek parametrenin numarasını girin ve aşağı ok tuşuna basın. Yeni parametre için yeni değeri girin ve Write (Yaz) butonuna basın; diğer parametreleri benzer şekilde değiştirin. Ayar 7'ye dönün ve bu ayarı tekrar açık duruma getirin. E-stop (Acil Durdurma) butonunu sıfırlayın. İndeksleyiciyi orijine gönderin ve Handle Jog ve "A" butonlarına basarak düzgün çalıştığını doğrulayın. Elle kumanda kolunu kullanarak A ekseninde elle kumanda yaptırın, indeksleyici hareket etmelidir. Tablayı işaretleyerek doğru oran için kontrol edin, position (konum) sayfasında göründüğü durumdan 360 derece döndürün ve işaretin aynı yerde olduğunu kontrol edin. Eğer yakınsa (10 derece içinde) o zaman oran doğrudur.

İlk Yol-verme

Frezeyi (ve varsa, servo kontrolünü) çalıştırın ve indeksleyiciyi referans konumuna getirin. Bütün Haas indeksleyicileri, önden bakıldığında, saat yönüne doğru park eder. İndeksleyici saat yönünün tersine referansa giderse, E-stop (Acil Durdurma) düğmesine basın ve satıcınızı arayın.

Opsiyonel bir Beşinci Eksen

Beşinci eksen, dördüncü eksene benzer biçimde takılır. Ayarlar 78 ve 79 5inci ekseni yönlendirir ve eksen B adresi kullanılarak elle kumanda yaptırılır ve komut verilir.

A Ekseni Ofseti Üzerinde B (Eğimli Döner Ürünler)

Bu işlem eğimli döner ürünler üzerindeki B-ekseni tablası ve A-ekseni merkez hattının düzlemleri arasındaki mesafeyi belirler. Ofset bazı CAM yazılım uygulamaları için gereklidir.

1. B-ekseni dikey olana kadar A-eksenini döndürün. Makine iş mili üzerine bir kadranlı gösterge takın (veya diğer yüzeyden bağımsız tabla hareketi) ve tabla yüzünü belirtin. Komparatörü sıfıra ayarlayın.

- 2. Y-ekseni operatör pozisyonunu sıfıra ayarlayın (pozisyonu seçin ve ORİJİN düğmesine basın).
- 3. A-Eksenini 180° döndürün.

4. Tabla yüzü şimdi ilk gösterme ile aynı yönden gösterilmelidir. Tabla yüzü karşısına bir 1-2-3 bloğu yerleştirin ve tabla yüzünün karşısına dayanan bloğun yüzünü gösterin. Y-eksenini kompratör ucu ile bloğu karşılayacak şekilde hareket ettirin. Komparatörü sıfıra ayarlayın.

5. Yeni Y-ekseni pozisyonunu ölçün. Bu değeri A ekseni ofset değeri üzerindeki B'yi belirlemek için 2'ye bölün.

A Ekseni üzerinde B Gösterilen İşlem

EKSENLERIN DEVREDEN ÇIKARILMASI

Makineden çıkarıldığında 4. eksen için ayar 30'u ve 5. eksen için ayar 78'i kapatın. Kontrol açıkken hiçbir kabloyu bağlamayın veya ayırmayın. Ünite çıkarıldığında ayarlar kapatılmazsa, bir alarm verilecektir.

G Kodlari (Hazirlik Fonksiyonlari)

G00 Hızlı Hareket Konumlandırması (Grup 01)

- X Opsiyonel X-ekseni hareket komutu
- E Opsiyonel Y-ekseni hareket komutu
- Z Opsiyonel Z-ekseni hareket komutu
- A Opsiyonel A-ekseni hareket komutu

G00, makine eksenlerinin azami hızda hareket ettirilmesi için kullanılır. Öncelikli olarak, makineyi her besleme (kesme) komutu öncesinde verilen noktaya hızlı bir şekilde konumlandırmak için kullanılır (Tüm hareketler tam hızlı devirde yapılır). G kodu kiplidir, bu nedenle G00 ile bir blok, başka bir G01 kodu tanımlanana kadar takip eden tüm blokların hızlı hareket etmesine neden olur.

Programlama notu: Genellikle, hızlı hareket düz bir hat içinde olmaz. Tanımlanan her eksen aynı hızda hareket eder, ancak tüm eksenlerin hareketlerini aynı zamanda bitirmeleri beklenemez. Makine, bir sonraki komutu başlatmadan önce tüm hareketlerin tamamlanmasını bekleyecektir.

Artışlı veya mutlak pozisyon komutları (G90 veya G91), eksen hareket değerlerinin yorumlanma şeklini değiştirecektir. Ayar 57 (Tam Durma Korunmalı X-Y), bir hızlı hareketten önce ve sonra, tam bir duruş için makinenin ne kadar yakında bakleyeceğini değiştirebilir.

G01 Lineer İnterpolasyon Hareketi (Grup 01)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- X Opsiyonel X-ekseni hareket komutu
- E Opsiyonel Y-ekseni hareket komutu
- Z Opsiyonel Z-ekseni hareket komutu
- A Opsiyonel A-ekseni hareket komutu
- ,R Yayın yarıçapı
- ,C Pah mesafesi

Bu G-kodu eksenleri komut verilen ilerleme hızında hareket ettirir. Çoğunlukla iş parçasını kesmek için kullanılır. Bir G01 beslemesi, tek eksenli bir hareket olabileceği gibi eksenlerin bir kombinasyonu da olabilir. Eksen hareketlerinin hızları, ilerleme hızı (F) değeri ile kontrol edilir. Bu **F** değeri, dakikadaki (G94) ilerleme hızı (inç veya metrik) olabileceği gibi, iş mili devri başına ilerleme (G95) ya da hareketi tamamlamak için süre (G93) olabilir. İlerleme hızı değeri (F) mevcut program satırında veya önceki bir satırda olabilir. Başka bir F değeri komut verilene kadar kontrol daima en son F değerini kullanacaktır.

G01 kipli bir komuttur, bu, G00 gibi bir hızlı hareket komutu veya G02 yada G03 gibi dairesel bir hareket komutu tarafından iptal edilene kadar yürürlükte kalması anlamına gelir.

Bir G01 başlatıldığında, programlanmış olan bütün eksenler hareket edecek ve hedefe aynı anda ulaşacaklardır. Eğer bir eksen programlanan ilerleme hızına yetişemiyorsa, program G01 komutunu işleme koymayacaktır ve bir alarm (max feedrate exceeded (azami ilerleme hızı aşıldı) verilecektir.

Köşe Yuvarlatma ve Pah Kırma Örneği

Bir pah kırma bloğu veya köşe yuvarlatma bloğu, C (pah kırma) veya R (köşe yuvarlatma) tanımlanarak iki doğrusal interpolasyon bloğunun arasına otomatik olarak sokulabilirler. Başlangıç bloğunu takip eden durdurucu bir doğrusal interpolasyon bloğu olmalıdır (bir G04 durdurma müdahelesi olabilir).

Bu iki doğrusal interpolasyon bloğu bir kesişme köşesini belirtir. Eğer başlangıç bloğu bir C'yi belirlerse, C'yi takip eden değer, kesişmeden pahın başladığı yere ve aynı zamanda kesişmeden pahın bittiği yere olan uzaklıktır. Eğer başlangıç bloğu bir R'yi belirlerse, R'yi takip eden değer, köşeye iki noktasından teğet olan bir dairenin yarıçapıdır: köşe yuvarlatma yayının başlangıcı ve bu yayın bitiş noktası. Pah kırma veya köşe yuvarlatma belirleyen ardışık bloklar olabilir. Aktif düzlem **XY** (G17), **XZ** (G18) veya **YZ** (G19) olsa da, seçilen düzlem tarafından belirlenen iki eksen üzerinde hareket olmalıdır.

G02 CW / G03 CCW Dairesel İnterpolasyon Hareketi (Grup 01)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I X ekseninden dairenin merkezine olan opsiyonel uzaklık
- J Y ekseninden dairenin merkezine olan opsiyonel uzaklık

K'dır. Z ekseninden dairenin merkezine olan opsiyonel uzaklık

- R Dairenin opsiyonel yarıçapı
- X Opsiyonel X-ekseni hareket komutu
- E Opsiyonel Y-ekseni hareket komutu
- Z Opsiyonel Z-ekseni hareket komutu
- A Opsiyonel A-ekseni hareket komutu

Bir yarıçapın programlanması için en çok tercih edilen yöntem I,J ve K kullanılmasıdır. R birçok genel yarıçap için uygundur.

Bu G kodları dairesel hareket belirlemek üzere kullanılırlar. Dairesel hareketi tamamlamak için iki eksen gereklidir ve doğru düzlem, G17-19, kullanılmalıdır. Bir G02 veya G03 komutu verilmesinin iki yöntemi vardır, birincisi I, J, K adreslerinin kullanılması, ikincisi ise R adresinin kullanılmasıdır. Bir pah kırma veya köşe yuvarlatma özelliği, G01 tanımlamasında anlatıldığı gibi, C (pah kırma) veya R (köşe yuvarlatma) tanımlanarak programa eklenebilir.

I, J, K adreslerinin kullanılması

I, J ve K adresleri, yay merkezinin yerini, başlangıç noktasına göre belirlemek üzere kullanılırlar. Diğer bir deyişle I, J, K adresleri, başlangıç noktasından yayın merkezine olan uzaklıklardır. Yalnızca seçilen düzleme özgü I, J veya K kullanılabilir (G17 IJ kullanır, G18 IK kullanır ve G19 JK kullanır). X, Y ve Z komutları yayın bitiş noktasını belirler. Eğer seçilen düzlem için X, Y veya Z konumu belirtilmediyse, yayın bitiş noktası o eksenin başlangıç noktası ile aynıdır.

Tam bir daire kesmek için I, J ve K adresleri kullanılmalıdır; bir R adresi kullanılması işe yaramayacaktır. Tam bir daire kesmek için, bir bitiş noktası belirlemeyin (X, Y ve Z); dairenin merkezini tanımlamak için I, J veya K proglamlayın. Örneğin: G02 I3.0 J4.0 (G17; XY düzlemi varsayar)

R adresinin kullanılması

R-değeri, başlangıç noktasından dairenin merkezine olan mesafeyi tanımlar. 180° veya daha küçük yarıçaplar için pozitif bir R-değeri ve 180° 'den daha büyük yarıçaplar için negatif bir R-değeri kullanın.

Programlama Örnekleri

G90 G54 G00 X-0.25 Y-.25 G01 Y1.5 F12. G02 X1.884 Y2.384 R1.25

Köşe Yuvarlatma ve Pah Kırma örneği:

G00 X1. Y1. G01 Z-0.125 F30. G01 X5 ,C0.75 F12 G01 Y1.75 G01 X6. ,C0.25 G01 Y5. ,R06.25 G01 X5. G01 Y8. ,C0.5 G01 X1. ,R1. G01 Y1. G00 X0.75 Y0.75

G90 G54 G00 X-0.25 Y-0.25 G01 Y1.5 F12. G02 X1.884 Y0.616 R-1.25

Diş Frezeleme

Frezede diş açma, X-Y 'de dairesel hareketi oluşturmak üzere standart bir G02 veya G03 hareketi kullanır, ardından diş adımını oluşturmak üzere aynı bloğa bir Z hareketi ilave eder. Bu, dişin bir turunu oluşturur; kesicinin birden fazla dişi geri kalanını oluşturur. Örnek kod satırı: N100 G02 I-1.0 Z-.05 F5. (20 hatveli diş için 1 inç'lik bir yarıçap oluşturur)

Frezede Diş Açma notları: 3/8 inçten küçük olan iç delikler mümkün veya pratik olmayabilir. Daima eş yönlü frezeleme yapın. (Kesici takım saat yönünde dönerken kesme sola doğru yapılır.)

İç çap dişleri açarken G03, dış çap dişleri açarken G02 kullanın I.D. (İç çap) sağ vida dişi, Z-ekseninde bir diş adımı miktarı kadar yukarı doğru hareket edecektir. O.D. (Dış çap) sağ vida dişi, Z-ekseninde bir diş adımı miktarı kadar aşağı doğru hareket edecektir. HATVE = 1/inç başına diş sayısı (Örnek - 1.0 bölü 8 TPI = .125)

Frezede Diş Açma Örneği:

Bu program, .750 çap x 1.0 diş tarağı kullanarak, iç çap bir deliğe 1.5 x 8 TPI'lik diş açacaktır.

Başlangıç için, (1.500) delik çapı alın. Kesici çapını .750 çıkarın ve ardından 2 ile bölün. (1.500 - .75) / 2 = .375

Sonuç (.375), parçanın iç çapından kesicinin başladığı noktaya olan mesafedir.

Başlangıç konumlandırmasından sonra, programın sonraki adımı kesici telafisini etkinleştirmek ve dairenin iç çapına hareket etmektir.

Sonraki adım, tam bir diş adımı miktarı kadar Z-Ekseni komutu ile beraber tam bir daire (G02 veya G03) programlamaktır (bu, "helisel enterpolasyon" olarak adlandırılmaktadır)

Son adım, dairenin iç çapından uzaklaşmak ve kesici telafisini kapatmaktır

Kesici telafisi, bir yay hareketi esnasında kapatılamaz veya açılamaz. Takımı kesilecek çapa getiren ve ondan uzaklaştıran doğrusal bir hareket ya X ya da Y ekseninde yapılmalıdır. Bu hareket ayarlanabilen azami telafi miktarı olacaktır.

Frezede Diş Açma Örneği

Program Örneği

% O02300 T1 M06 (0.5 DIA 2FLT. DİŞ FREZELEME) G00 G90 G54 X0. Y0. S1910 M03 G43 H01 Z0.1 M08

G00 Z-0.6

N1 G01 G41 D01 X0.125 F30. N2 G03 X0.75 Y0. R0.3125 F11.5 N3 G03 I-0.75 Z-0.475 N4 G03 X0.125 Y0. R0.3125 F30. N5 G01 G40 X0. Y0. G00 Z0.1 M09 G28 G91 Y0. Z0. M30 %

Açıklama

(Frezede diş açma 1.5 x 8 TPI) (X0. Y0. deliğin merkezindedir) (Z0. parçanın en üst kısmındadır - .5" kalınlığında malzeme kullanılmaktadır)

(Kesici Telafisi Açılması) (İşlenmiş deliğin iç çapına hareket verme) (Z .125 yukarı hareket ederken tam bir tur (Yeni dişlerden uzaklaşma hareketi) (Kesici Telafisi İptal)

Not: Azami kesici telafisi ayarlanabilirliği .175'dir.

-@-

Frezede Dış Çap Diş Açma

Frezede Dış Çap Diş Açma Örneği

Program Örneği	Açıklama
%	
O02400	
T1 M06 (0.5 DIA. 2FLT. DİŞ FREZELEME)	(Frezede diş açma 2.0 dış çap X 16 TPI)
G00 G90 G54 X-0.2 Y1.4 S1910 M30	(X0, Y0 çıkıntının merkezindedir)
G43 H01 Z0.1 M08	(Z0 parçanın en üst kısmındadır–Çıkıntı yüksekliği 1.125 inçtir)
G00 Z-1.	
G01 G41 D01 Y1. F30.	(Kesici Telafisinin Açılması)
G01 X0. F11.5	(Çıkıntıya doğrusal hareket)
G02 J-0.962 Z-1.0625	(Dairesel hareket; negatif Z hareketi)
G01 X0.2	(Çıkıntıdan uzaklaşan doğrusal hareket)
G01 G40 Y1.4 F30.	(Kesici Telafisinin Kapatılması)
G00 Z0.1 M09	
G28 G91 Y0. Z0.	
M30	
%	

Not: Bir kesici telafisi hareketi, hareket telafi edilen miktardan büyük olduğu sürece herhangi bir konumdan yapılan her türlü X veya Y hareketinden oluşabilir.

Tek-Noktada Diş Açma Frezeleme Örneği

Kesici çapı .750 inç radyal değer .875 diş adımı .0833 (12 TPI) ve parça kalınlığı 1.0 olarak program 2.500 çapında bir delik içindir.

Program Örneği	Açıklama
%	
O1000	(X0,Y0 deliğin merkezindedir, Z0 parçanın en üst kısmındadır
T1 M06	(Takım No.1, .750 çapında tek-noktalı bir diş açma takımıdır)
G00 G90 G54 X0 Y0 S2500 M03	
G43 H01 Z.1 M08	
G01 Z-1.083 F35.	
G41 X.275 D1	(Radyal değer)
G3	X.875 I.3 F15.
G91 G3 I875 Z.0833 L14	(.0833 adım x 14 paso = 1.1662 Z-ekseni hareketi)
G90 G3 X.275 I300	
G00 G90 Z1.0 M09	
G1	G40 X0 Y0
G28 G91 Y0 Z0	
M30	
%	

Helisel Hareket

Helisel (spiral) hareket, seçilen düzlemde olmayan doğrusal ekseni programlayarak, G02 veya G03 ile yapılabilir. Diğer iki eksen dairesel hareket yaptırılırken, bu üçüncü eksen belirlenen eksen boyunca doğrusal bir şekilde hareket ettirilecektir. Helisel hız programlanan ilerleme hızına uyacak şekilde her bir eksenin hızı kontrol edilecektir.

G04 Rolanti Süresi (Grup 00)

P Saniye veya mili saniye cinsinden rolanti süresi G04 programda bir bekleme veya program geciktirme için kullanılır. G04'ü içeren blok, P kodu tarafından belirtilen zaman kadar erteleyecektir. Örneğin G04 P10.0. Bu programı 10 saniye erteleyecektir. Ondalık kesimin kullanımına dikkat edin, G04 P10. 10 saniye ertelemedir; G04 P10, 10 mili saniye ertelemedir.

G09 Kesin Duruş (Grup 00)

Kontrollü bir eksen durmasını belirtmek için G09 kodu kullanılır. Bu sadece içinde komut aldığı bloğu etkiler; kipsizdir, takip eden blokları etkilemez. Başka bir komut verilmeden önce makine hareketleri programlanan noktaya yavaşlayacaktır.

G10 Ayar Ofsetleri (Grup 00)

G10 programlayıcının ofsetleri program içinde ayarlamasını sağlar. G10 kullanımı, ofsetlerin manuel girişlerini değiştirir (örn. Takım boyu ve çapı, ve çalışma koordinatları ofsetleri).

- L Ofset kategorisini seçer.
 - L2 G52 ve G54-G59 için iş koordinatı orijini
 - L10 Uzunluk ofseti miktarı (H kodu için)
 - L1 veya L11 Takım aşınması ofset miktarı (H kodu için)
 - L12 Çap ofset miktarı (**D** kodu için)
 - L13 Çap aşınması ofset miktarı (D kodu için)
 - L20 G110-G129 için yardımcı iş koordinatı orijini
- P Belirli bir ofseti seçer.
 - P1-P100 D veya H kodu ofsetlerine referans vermek için kullanılır (L10-L13)
 - P0 G52 iş koordinatına referans verir (L2)
 - P1-P6 G54-G59 iş koordinatlarına referans eder (L2)
 - P1-P20 G110-G129 yardımcı koordinatlara referans eder (L20)
 - P1-P99 G154 P1-P99 yardımcı koordinatlara referans eder (L20)
- R Boy ve çap için ofset değeri veya artım miktarı.
- X Opsiyonel X-ekseni sıfır konumu.
- E Opsiyonel Y-ekseni sıfır konumu.
- Z Opsiyonel Z-ekseni sıfır konumu.
- A Opsiyonel A-ekseni sıfır konumu.

Programlama Örnekleri

G10 L2 P1 G91 X6.0	{Koordinatı G54 6.0 sağa taşı};
G10 L20 P2 G90 X10. Y8.	{İş koordinatı G111'i, X10.0 ,Y8.0 olarak ayarlar};
G10 L10 G90 P5 R2.5	{Takım No.5 için ofseti 2.5'e ayarla};
G10 L12 G90 P5 R.375	{Takım No.5 için çapı .375 inçe ayarla};
G10 L20 P50 G90 X10. Y20.	{İş koordinatı G154'ü P50 X10 olarak ayarla. Y20.}

G12 Dairesel Cep Frezeleme CW / G13 Dairesel Cep Frezeleme CCW (Grup 00)

Bu iki G kodu dairesel şekilleri frezelemek için kullanılır. Bunlar sadece kullanıldıkları dönüş yönü itibariyle farklıdırlar. Her iki G kodu da varsayılan XY dairesel düzlemini kullanırlar (G17) ve G12 için G41'nin ve G13 için G42'in kullanılmasını gerektirirler. Bu iki G kodu kipli değildirler.

- *D Takım yarıçapı veya çapının seçilmesi
- I İlk çemberin yarıçapı (veya K yoksa bitir). I değeri Takım Yarıçapından daha büyük, ancak K değerinden daha küçük olmalıdır.
- K'dır. Bitirilmiş dairenin yarıçapı (eğer belirlenmişse)
- L Daha derin kesme tekrarı için döngü sayısı
- Q Yarıçap artım miktarı veya adımlama (K ile kullanılmalıdır)
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- Z Kesme derinliği veya artım miktarı
- *Programlanan daire çapını elde etmek için kontrol seçilen D kodundaki takım ölçüsünü kullanır. Takım eksen çizgisini programlamak için D0 seçin.

NOT: Kesici telafisi istenmiyorsa, D00 belirleyin. G12/G13 bloğunda D belirlenmezse, bir G40 ile daha önce iptal edilmiş olsa bile, son olarak verilmiş olan D değeri kullanılacaktır.

X ve Y kullanılarak takım dairenin merkezinde konumlandırılmalıdır. Daire içindeki bütün malzemeyi boşaltmak için takım çapından daha küçük I ve Q değerleri ve daire yarıçapına eşit bir K değeri kullanın. Sadece bir daire yarıçapı kesmek için yarıçapa ayarlanan bir I değeri kullanın ve K veya Q değeri kullanmayın.

%

O00098 (ÖRNEK G12 VE G13)	
(OFSET D01 YAKLAŞIK TAKIM EBATINA AYARLANMIŞ)	
(TAKIMIN ÇAPI Q'DAN BÜYÜK OLMALI- DIR)	
T1M06	
G54G00G90X0Y0	(G54'nin eksenine hareket)
G43Z0.1H01	
S2000M03	
G12I1.5F10.Z-1.2D01	(Cebi saat yönünde bitirme)
G00Z0.1	
G55X0Y0	(G55'nin eksenine hareket)
G12I0.3K1.5Q0.3F10.Z-1.2D01	(Saat yönünde kaba işleme ve bitirme)
G00Z0.1	
G56X0Y0	(G56'nin eksenine hareket)
G13I1.5F10.Z-1.2D01	(Cebi saatin ters yönünde bitirme)
G00Z0.1	
G57X0Y0	(G57'nin eksenine hareket)
G13I0.3K1.5Q0.3F10.Z-1.2D01	(Saatin ters yönünde kaba işleme ve bitirme)

G00Z0.1 G28

M30

G kodları kesici telafisinin kullanıldığını varsaymaktadır, bu yüzden program satırında G41 veya G42'ye gerek yoktur. Bununla beraber, daire çapını ayarlamak üzere kesici yarıçapı veya çapı için bir D ofset numarası gerekmektedir.

Aşağıdaki programlama örnekleri, bu programların yazılabileceği farklı yollarla birlikte G12 ve G13 formatını göstermektedir.

Tek Paso: Sadece I kullanın.

Uygulamalar: Tek-paso düz havşa açma; küçük deliklerin kaba ve son cep işlemeleri, O-ring yataklarının iç çap işlemesi.

Birden Fazla Paso: I, K, ve Q kullanın.

Uygulamalar: Birden fazla-paso düz havşa açma; kesici bindirmesi ile büyük deliklerin kaba ve son cep işlemeleri.

Birden Fazla Z-Derinlik Pasosu: Sadece I veya I, K, ve Q (G91 ve L de kullanılabilir).

Uygulamalar: Derin kaba ve son ölçüye getirme pasosu cep işleme.

Önceki şekiller, cep frezeleme G-kodları sırasındaki takım yolunu göstermektedir.

Örnek I, K, Q, L ve G91 kullanarak G13 birden fazla-paso:

Bu program G91 ve **4** seferlik bir **L** sayısı kullanmaktadır, onun için bu çevrim toplam dört kez yürütülecektir. **Z** derinliği artım miktarı 0.500'dir. Bu, **L** sayısı ile çarpılarak bu deliğin toplam derinliğini 2.000 yapar.

G91 ve L sayısı aynı zamanda bir G13 "yalnızca I" satırında da kullanılabilir.

Not: Eğer kontrol Ofsetleri ekranının geometri sütununa bir değer girilmişse, bir D0 olsa da olmasa da G12/ G13 veriyi okuyacaktır. Kesici telafisini iptal etmek için program satırının arasına bir D00 ekleyin, bu, Ofsetlerin geometrisi sütunundaki değeri atlayacaktır.

Program Örneği	Açıklama
%	
O4000	(Yarıçap/Çap ofset sütununa 0.500 girilir)
T1 M06	(Takım No1 0,500" çapında bir parmak frezedir)
G00 G90 G54 X0 Y0 S4000 M03	
G43 H01 Z.1 M08	
G01 Z0 F30.	
G13 G91 Z5 I.400 K2.0 Q.400 L4 D01 F20.	
G00 G90 Z1.0 M09	
G28 G91 Y0 Z0	
M30	
%	

G17 XY / G18 XZ / G19 YZ düzlem seçimi (Grup 02)

Kendisine dairesel bir frezeleme işlemi (G02, G03, G12, G13) yapılan iş parçasının yüzü için üç ana eksenden (X, Y ve Z) ikisi seçilmiş olmalıdır. Düzlemi seçmek üzere üç G kodundan biri kullanılır, XY için G17, XZ için G18 ve YZ için G19. Her biride kiplidir ve sonradan gelen bütün dairesel hareketlere uygulanır. Düzlem seçmenin varsayılanı G17'dir, bu demektir ki, G17 seçilmeksizin XY düzleminde dairesel bir hareket programlanabilir. Düzlem seçilmesi aynı zamanda G12 ve G13 dairesel cep frezelemeye de uygulanır (daima XY düzleminde).

Kesici yarıçap telafisi seçilmişse (G41 veya G42), dairesel hareket için sadece XY düzlemini (G17) kullanın.

G17 Tanımı - Operatör XY tablasına yukarıdan bakıyorken dairesel hareket. Bu, takımın tablaya göre hareketini tanımlar.

G18 Tanımı - Operatör makinenin arkasından ön kontrol paneline doğru bakıyorken dairesel hareket olarak tanımlanır.

G19 Tanımı - Operatör makinenin kontrol panelinin bulunduğu yan tarafından tablanın ortasından bakıyorken dairesel hareket olarak tanımlanır.

G20 İnç Seçimi / G21 Metrik Seçimi (Grup 06)

G kodları G20 (inç) ve G21 (mm) kodları, inç/metrik seçiminin program için doğru olarak ayarlandığından emin olmak için kullanılırlar. İnç ve metrik programlama arasındaki seçim Ayar 9 kullanılarak yapılmalıdır.

G28 Opsiyonel G29 Referans Noktası Üzerinden Makine Sıfırına Dönme (Grup 00)

G28 kodu, tüm eksenleri makine sıfır noktasına döndürmek için kullanılır, bir eksen (veya eksenler) belirtildiğinde, sadece bu durumda o eksen (veya eksenler) makine sıfır noktasına döndürülür. G28, aşağıdaki kod satırları için takım boyu ofsetlerini iptal eder.

Örnek 1

İş Parçası Ofseti G54: Z = 2.0 Takım 2 Boyu: 12.0 Program kesimi: G90 G54; G43 H02; G28 Z0.; G00 Z1.

G28 bloğu Z = 0 'a hareket etmeden önce makine koordinatı Z = 14.0 'a hareket edecektir. Aşağıdaki blok (G00 Z1.) makine koordinatı Z = 1'e hareket edecektir.

Örnek 2 (Örnek 1'deki iş parçası ve takım ofsetlerinin aynısı)

Program kesimi: G54; G43 H02; G00 G91G28 Z0 Artışlı konumlama yürürlükte olduğundan, G28 bloğu doğrudan makine koordinatı Z = 0 'a gidecektir.

G29 Referans Noktasından Geri Dönme (Grup 00)

G29 kodu eksenleri belirli bir konuma hareket ettirmek için kullanılır. Bu blokta seçilen eksenler G28'de kaydedilen G29 referans noktasına hareket ettirilir, ve daha sonra G29 komutunda belirtilen konuma hareket ettirilir.

G31 Atlamaya Kadar Besleme (Grup 00)

(Bu G-kodu opsiyoneldir ve bir prob gerektirir)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- X X-ekseni mutlak hareket komutu
- E Y-ekseni mutlak hareket komutu
- Z Z-ekseni mutlak hareket komutu
- A A-ekseni mutlak hareket komutu
- B B-ekseni mutlak hareket komutu

Bu G-kodu eksenleri programlanan konuma hareket ettirir. Bu sadece G31'in içinde belirtildiği blok için geçerlidir. Belirtilen hareket başlatılır ve konuma ulaşılana kadar veya proba bir sinyal ulaşana kadar (atlama sinyali) devam eder. Yolun sonuna ulaşıldığında kumanda bip sesi çıkarır.

Kesici Telafisini bir G31 ile kullanmayın.

Bir bekleme ile tabla probunu açıp kapatmak için saptanan M-kodlarını kullanın (örneğin M52 ve M62).

Örneğin:

```
M53
G04 P100
M63
```

Ayrıca M75, M78 ve M79'a bakın.

G35 Otomatik Takım Çapı Ölçülmesi (Grup 00)

(Bu G-kodu opsiyoneldir ve bir prob gerektirir)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- D Takım çapı ofset numarası
- X Opsiyonel X-ekseni komutu
- E Opsiyonel Y-ekseni komutu

Ototmatik Takım Çap Ofseti Ölçülmesi fonksiyonu (G35), takım çapının (veya yarıçapının) probun iki pasosu kullanılarak ayarlanması için kullanılır; takımın her bir tarafında bir tane olmak üzere. Birinci nokta bir M75 kullanarak G31 bloğu ile ayarlanır ve ikinci nokta G35 bloğu ile ayarlanır. Bu iki nokta arasındaki mesafe seçilen (sıfırdan farklı) Dnnn ofsetine ayarlanır. Ayar 63 (Takım Prob Genişliği), takımın ölçümünün takım probunun genişliği kadar azaltılması için kullanılır.

Bu G-kodu eksenleri programlanan konuma hareket ettirir. Belirtilen hareket başlatılır ve konuma ulaşılana kadar veya proba bir sinyal (atlama sinyali) gönderene kadar devam eder.

Notlar:

```
Avrica G31'e bakin.
  Tabla probunu açmak için saptanan M-kodunu (M52) kullanın.
  Tabla probunu kapatmak icin saptanan M-kodunu (M62) kullanın.
  Ayrıca M75, M78 ve M79'a bakın.
  Kesici Telafisini bir G35 ile kullanmayın.
  Bir sağ yan kesici için mili (M04) ters yönde çalıştırın.
O1234 (G35)
M52
T1 M06
G00 G90 G54 X0 Y1.
G43 H01 Z0
G01 Z-1. F10.
M04 S200
G31 Y0.49 F5. M75
G01 Y1. F20.
Z0
Y-1.
```
Z-1. G35 Y-0.49 D1 F5. G01 Y-1. F20. M62 G00 G53 Z0 M05 M30

G36 Otomatik İş Parçası Ofseti Ölçümü (Grup 00)

(Bu G-kodu opsiyoneldir ve bir prob gerektirir)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I X-ekseni boyunca opsiyonel ofset mesafesi
- J Y-ekseni boyunca opsiyonel ofset mesafesi
- K'dır. Z-ekseni boyunca opsiyonel ofset mesafesi
- X Opsiyonel X-ekseni hareket komutu
- E Opsiyonel Y-ekseni hareket komutu
- Z Opsiyonel Z-ekseni hareket komutu

Otomatik Çalışma Ofseti Ölçümü (G36), bir proba iş parçası bağlama tertibatı ofsetlerini ayarlama komutu vermek için kullanılır. G36 iş parçasına iş miline bağlı bir probla dokunmak üzere makine eksenlerini ilerletecektir. Eksen (eksenler) probdan bir sinyal gelene veya hareket sınırına ulaşılana kadar hareket edecektir.

Bu fonksiyon icra edildiğinde takım ofsetleri (G41, G42, G43 veya G44) aktif olmamalıdır. Programlanan her eksen için halihazırda aktif olan iş koordinat sistemi ayarlanır. Atlama sinyalinin alındığı nokta sıfır konumu olur.

Eğer bir I, J, veya K belirlenmişse, uygun eksen iş parçası ofseti I, J, veya K komutundaki miktar kadar kaydırılır. Bu, iş parçası ofsetinin, probun gerçekte parçaya dokunduğu noktadan uzağa kaydırılmasına imkan tanır.

Notlar:

Probla dokunulan noktalar Ayar 59 ve 62'deki değerler kadar ofset yaptırılırlar.

G36 kullanırken G91 artışlı hareketleri kullanın.

Bir bekleme ile iş mili probunu açıp kapatmak için saptanan M-kodlarını kullanın (örneğin M53 ve M63). Örnek:

M53 G04 P100 M63

Program Örneği

O1234 (G36) M53 G04 P100 M63 G00 G90 G54 X1. Y0 Z-18. G91 G01 Z-1. F20. G36 X-1. F10. G90 G01 X1. M53 G04 P100 M63 G00 G90 G53 Z0 M30

G37 Otomatik Takım Ofseti Ölçülmesi (Grup 00)

(Bu G-kodu opsiyoneldir ve bir prob gerektirir)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- H Takım ofset numarası
- Z Gerekli Z-ekseni ofseti

Otomatik Takım Boyu Ofseti Ölçümü (G37), bir proba takım boyu ofsetlerini ayarlama komutu vermek için kullanılır. G37 bir takıma tablaya bağlı bir probla dokunmak üzere Z-eksenini ilerletecektir. Z-ekseni probdan bir sinyal gelene veya hareket sınırına ulaşılana kadar hareket edecektir. Sıfırdan farklı bir H kodu ile ya G43 ya da G44 aktif olmalıdır. Probdan sinyal alındığında (atlama sinyali) belirtilen takım ofsetini (Hnnn) ayarlamak üzere Z konumu kullanılır. Sonuçta elde edilen takım ofseti, iş parçası sıfır noktası ile probun dokunduğu nokta arasındaki ofsettir.

Koordinat sistemi (G54-G59, G110-G129) ve takım boyu ofsetleri (H01-H200) bu blok veya önceki blok içinde seçilebilir.

Notlar:

Tabla probunu açmak için saptanan M-kodunu (M52) kullanın. Tabla probunu kapatmak için saptanan M-kodunu (M62) kullanın. Bir atlama fonksiyonu sırasında Kesici Telafisi aktif olmayabilir. Ayrıca M78 ve M79'a bakın. Ofset olmaması için Z0 belirleyin. O1234 (G37) T1 M06 M52 G00 G90 G110 X0 Y0 G00 G43 H1 Z5. G37 H1 Z0. F30. G00 G53 Z0 M62 M30

G40 Takım Telafisi İptali (Grup 07)

G40, G41 veya G42 kesici telafisini iptal edecektir.

G41 2D Kesici Telafisi Sol / G42 2D Kesici Telafisi Sağ (Grup 07)

G41 sol kesici telafisini seçecektir; yani, takımın ölçüsünü telafi etmek üzere takım programlanan güzergahın soluna alınmıştır. Doğru takım yarıçap veya çap ofsetini seçmek için bir D adresi programlanmalıdır. Eğer seçilen ofsetteki değer negatif ise, kesici telafisi, G42 (Kesici Telafisi Sağ.) belirtilmiş gibi çalışacaktır.

Programlanan yolun sağ veya sol tarafı, takım uzaklaşırken takıma bakarak belirlenir. Eğer takım uzaklaşırken programlanan yolun solunda olması gerekiyorsa, G41 kullanın. Eğer uzaklaşırken programlanan yolun sağında olması gerekiyorsa, G42 kullanın. Daha fazla bilgi için "Kesici Telafisi" bölümüne bakın.

G43 Takım Boyu Telafisi + (Ekle) / G44 Takım Boyu Telafisi - (Çıkar) (Grup 08)

Bir G43 kodu, takım boy telafisini pozitif yönde seçer; ofsetler sayfasındaki takım boyu komut verilen eksen konumuna eklenir. Bir G44 kodu, takım boyu telafisini negatif yönde seçer; ofsetler sayfasındaki takım boyu komut verilen eksen konumundan çıkarılır. Ofsetler sayfasından doğru girişi seçmek için sıfırdan farklı bir H adresi girilmelidir.

G47 Yazı Yazma (Grup 00)

Bir G47 komutu sırasında kontrol, oyma esnasında G91'e (Artışlı mod) geçer ve daha sonra bittiğinde G90'a (Mutlak mod) geri döner. Kontrolün artışlı modda kalmasını sağlamak için, Ayar 29 (G91 Kipli Olmayan) ve Ayar 73 (G68 Artışlı Açı) kapalı olmalıdır.

- E Dalış ilerleme hızı (birim/dk)
- F Oyma ilerleme hızı (birim/dk)
- I Dönüş açısı (-360. ila +360.); varsayılan 0
- J İnç cinsinden metin yüksekliği (minimum = 0.001 inç); varsayılan 1.0 inç
- P 0 tam dize oyma için
 1 ardışık seri numarası oymak için
 32-126 ASCII karakterleri için
- R Dönüş düzlemi
- X X oyma başlangıcı
- E Y oyma başlangıcı
- Z Kesme derinliği

Ardışık Seri Numarası Oyma

Bu yöntem bir dizi parça üzerine her seferinde bir artırılan sayıların oyulması için kullanılır. # sembolü, seri numarasındaki hane sayısını seçmek için kullanılır. Örneğin, G47 P1 (####), seri numarasını dört hane ile sınırlandıracaktır (P1 (##) seri numarasını iki basamakla sınırlayacaktır vb.)

Başlangıç seri numarası ya programlanabilir ya da elle ayarlanabilir. Örneğin, programlanmışsa, G47 P1 (1234) başlangıç seri numarasını "1234." e ayarlayacaktır.

Başlangıç seri numarası bir makro değişkenine elle de ayarlanabilir. Bunu yapmak için, Makrolar seçeneğinin etkinleştirilmesi gerekmez. Makro değişkeni #599, yazılacak başlangıç seri numarasını tutmak üzere kullanılır. Örneğin, makro değişkeni #599 "1234," e ayarlandığında, G47 P1 (####), 1234 üretecektir. Daha fazla bilgi için Makrolar bölümüne bakın.

Tam Dize Oyma

Bu yöntem bir parça üzerine istenen metnin oyulması için kullanılır. Metin, P0 deyimi ile aynı satırda bir yorum formunda olmalıdır. Örneğin, G47 P0 (BUNU OY) BUNU OY üretecektir

Örnek

Bu örnek gösterilen şekli oluşturacaktır.

G47 P0 X2.0 Y2.0 I45. J.5 R.05 Z-.005 F15.0 E10.0 (OYULACAK METİN)

Bu örnekte:

G47 P0tam dize oymayı seçinX2.0 Y2.02.0 seçin, metin için başlangıç noktası 2.0 olarakI45.metni pozitif 45° açıya yerleştirirJ.5metin yüksekliğini 0.5 inçe ayarlarR.05kesicinin kesme düzlemi üzerinde 0.05 inçe çekilmesi komutunu verirZ-.0050.005 inç (mm) derinlikte kesme seçerF15.015 birim/dk 'lık bir oyma ilerleme hızı seçer

E10.0 kesicinin 10 birim/dk 'lık bir hızla dalmasına komut verir

Her bir karakteri belirleyen freze strokları, örneğin yazı tipi HAAS kumandasında derlenmiş G kodlarıdır. Yazı tipi karakterleri farklı bir G kodu programı temin ederek yeniden tanımlanarak buna O09876 verilebilir. Bu program HAAS kumandası tarafından beklenen formata uygun olmalıdır.

Not: Font tanımlaması dışındaki programlar için O09876 program numarasını kullanmaktan kaçının. O09876'nın düzenli frezeleme programının üzerine yazılması G47'nin düzgün çalışmasını engelleyecektir.

Kılavuzluk için yerleşik yazı tipi progrmından bazı kodlar aşağıda gösterilmiştir. Aşağıdaki örnek bir şablon olarak kullanılabilir. Kod aynen gösterildiği gibi yazılmalıdır.

P değerleri belirli karakterleri yazmak içindir:

32	boşluk	41)	59	;	93]
33	!	42	*	60	<	94	^
34	66	43	+	61	=	95	_
35	#	44	,	62	>	96	6
36	\$	45	-	63	?	97-122	a-z
37	%	46		64	@	123	{
38	&	47	/	65-90	A-Z	124	Ι
39	ſ	48-57	0-9	91	[125	}
40	(58	:	92	\	126	~

Örnek

"\$2.00" yazmak için iki satır kodu gereklidir. Birincisi dolar işaretini yazmak için bir P36 kullanıyor olacaktır ve ikincisi P0 (2.00) kullanacaktır. Dolar işareti ile 2 arasında bir boşluk bırakmak için birinci ve ikinci kod satırları arasında eksenlerin kaydırılması gerekeceğine dikkat edin.

Örneğin O9876 G-Kodu Programı Yorumlar

%	% program başlangıcını belirtir.
O9876 (Oyma)	Program numarası 9876 olmalıdır.
#700= #4003	G90/G91'i kaydet
#701= #4001	G00/G01 vs'yi kaydet.
G00 X#24 Y#25	
Z#18	Eğer R, G90/G91 kullanıcılarıyla beraber buraya hareket ederse
#702= #5003 - #26	
IF [#9 EQ #0] #9= #4109	Herhangi birisi belirtilmemişse mevcut F'yi kullanın
IF [#8 EQ #0] #8= #9	E yoksa F'yi kullanın
G91	Buradan sonraki tüm artışlar
IF [#4 EQ #0] #4= 0.0	
IF [#5 EQ #0] #5= 1.0	
G68 R#4	
G51 P [#5 * 1000]	

oymadan sonra

N1000 M97 Satır sonunda M97 otomatik M99 GOTO1000 N125 M99 (SPACE/ARALIK) Bu bölüm bir aralık işler. N126 G00 X0.864 F#8 M99 N127 G#700 G90/G91 Geri Alma G#701 G00/G01 vs'yi geri al. M99 N1 Bu bölüm bir ünlem işareti işer (!) G00 X0.2692 G01 Z - #702 F#8 G03 J0.0297 F#9 G00 Z#702 G00 Y0.2079 G01 Z - #702 F#8 G01 X0.0495 Y0.6732 F#9 G03 X-0.099 R0.0495 G01 X0.0495 Y-0.6732 G00 Z#702 G00 X0.2692 Y-0.2079 M99 N2 Bu bölüm çift tırnakları işler. («) G00 X0.2345 Y0.792 G01 Z - #702 F#8 G01 X0.0148 Y0.198 F#9 G01 X-0.0297 G01 X0.0148 Y-0.198 G00 Z#702 G00 X0.1485 G01 Z - #702 F#8 G01 X0.0148 Y0.198 F#9 G01 X-0.0297 G01 X0.0148 Y-0.198 G00 Z#702 G00 X0.2346 Y-0.792 M99 N3 (#) Bu bölüm bir # işareti işler.

G00 X0.4082 Y0.1666 G01 Z - #702 F#8 G01 X0.0433 Y0.8086 F#9 G00 Z#702 G00 X0.2627 Y0.0148 G01 Z - #702 F#8 G01 X-0.0433 Y-0.8234 F#9 G00 Z#702 G00 X0.2194 Y0.2374 G01 Z - #702 F#8 G01 X-0.6676 F#9 G00 Z#702 G00 X0.0155 Y0.319 G01 Z - #702 F#8 G01 X0.6614 F#9 G00 Z#702 G00 X0.2167 Y-0.723 M99 ...

%

% program bitimini belirtir.

Her bir karakterin yaratılması için kodu başlatmak için farklı bir etiker bulunmaktadır. Her bölüm bir M99'la biter.

Etiket	N126	N1	N2	N3	N4	N5	N6	N7	N8	N9
Karakter	space (aralık)	!	"	#	\$	%	&	6	()
Etiket	N10	N11	N12	N13	N14	N15	N16	N17	N18	N19
Karakter	*	+	,	-		/	0	1	2	3
Etiket	N20	N21	N22	N23	N24	N25	N26	N27	N28	N29
Karakter	4	5	6	7	8	9	:	;	,	=
Etiket	N30	N31	N32	N33	N34	N35	N36	N37	N38	N39
Karakter	>	?	@	А	В	С	D	Е	F	G
Etiket	N40	N41	N42	N43	N44	N45	N46	N47	N48	N49
Karakter	Н	I	J	K'dır.	L	Μ	N (Hayır)	0	Р	Q
Etiket	N50	N51	N52	N53	N54	N55	N56	N57	N58	N59
Karakter	R	S	Т	U	V	W	Х	Е	Ζ	[
Etiket	N60	N61	N62	N63	N64	N65	N66	N67	N68	N69
Karakter	١]	^	_	ſ	а	b	С	d	е
Etiket	N70	N71	N72	N73	N74	N75	N76	N77	N78	N79
Karakter	f	g	h	i	j	k	I	m	n	0
Etiket	N80	N81	N82	N83	N84	N85	N86	N87	N88	N89
Karakter	р	q	r	S	t	u	V	w	х	у
Etiket	N90	N91	N92	N93						
Karakter	Z	{		}						

G49 G43/G44/G143 iptal (Grup 08)

Bu G kodu takım boyu telafisini iptal eder. Not: Bir H0, G28, M30, ve Reset de takım boy telafisini iptal edecektir.

G50 Ölçeklendirme İptali (Grup 11)

G50 opsiyonel ölçeklendirme özelliğini iptal eder. Daha önceki bir G51 komutu ile ölçeklendirilmiş olan bir eksen artık yürürlükte değildir.

G51 Ölçeklendirme (Grup 11)

(Bu G-kodu opsiyoneldir ve Dönme ve Ölçeklendirme gerektirir)

- X X ekseni için opsiyonel ölçeklendirme merkezi
- E Y ekseni için opsiyonel ölçeklendirme merkezi
- Z Z ekseni için opsiyonel ölçeklendirme merkezi
- P bütün eksenler için opsiyonel ölçeklendirme merkezi; üç hane ondalık 0.001 'den 8383.000 'e kadar.

G51 [X...] [Y...] [Z...] [P...]

Bir ölçeklendirme merkezi, ölçeklendirilmiş konumu belirlemek üzere kontrol tarafından her zaman kullanılır. Eğer G51 komut bloğunda herhangi bir ölçeklendirme merkezi belirlenmemişse, o zaman en son komut verilen konum ölçeklendirme merkezi olarak kullanılır.

Ölçeklendirme (G51) komutu verildiğinde, makine hareketini adresleyen bütün X, Y, Z, I, J, K, veya R değerleri bir ölçeklendirme faktörü ile çarpılırlar ve bir ölçeklendirme merkezine göre ofset yaptırılırlar.

G51, G51 komutunu takip eden bloklardaki uygun olan bütün konumlandırma değerlerini etkileyecektir. X, Y ve Z eksenleri bir P adresi kullanılarak ölçeklendirilebilir, eğer bir P adresi girilmezse, Ayar 71 ölçeklendirme faktörü kullanılır.

Aşğıdaki programlar, farklı ölçeklendirme merkezleri kullanıldığında ölçeklendirmenin nasıl yapıldığını göstermektedirler.

İlk örnek, kontrolün mevcut iş parçası koordinat konumunu nasıl bir ölçeklendirme merkezi olarak kullandığını göstermektedir. Burada, X0 Y0 Z0 'dır.

G51 Ölçeklendirme

Bir sonraki örnek pencerenin merkezini ölçeklendirme merkezi olarak belirlemektedir.

G51 Ölçeklendirme

Son örnek ölçeklendirmenin, parça yerleştirme pimlerine karşı tespit ediliyormuş gibi takım yollarının kenarına nasıl yerleştirilebileceğini göstermektedir.

G51 Ölçeklendirme

Programlama notları:

Takım ofsetleri ve kesici telafi değerleri ölçeklendirmeden etkilenmezler.

Ölçeklendirme, geri çekilme düzlemleri ve artışlı değerler gibi korunmalı çevrim Z-eksen hareketlerini etkilemez.

Ölçeklendirmenin nihai sonuçları ölçeklendirilmekte olan değişkenin en düşük kesirli değerine yuvarlanır.

G52 İş Koordinat Sistemini Ayarlama (Grup 00 veya 12)

G52 komutu, ayar 33'ün değerine bağlı olarak farklı çalışır. Ayar 33; Fanuc, Haas, veya Yasnac tipi koordinatları seçer.

Eğer Yasnac seçilirse, G52 bir grup 12 G-kodudur. G52; G54, G55, vs. ile aynı şekilde çalışır. Güç açıldığında, reset'e basıldığında, programın sonunda veya bir M30 ile bütün G52 değerleri sıfıra (0) ayarlanmayacaktır. Bir G92 (İş Koordinatı Sistemleri Kaydırma Değerinin Ayarlanması) kullanırken, Yasnac formatında X, Y, Z, A ve B değerleri geçerli iş parçası konumundan çıkarılır ve otomatik olarak G52 iş parçası ofsetine girilir.

Eğer Fanuc seçilirse, G52 bir grup 00 G-kodudur. Bu global bir iş parçası koordinatı kaydırmasıdır. İş parçası ofset sayfasının G52 satırına girilen değerler, bütün iş parçası ofsetlerine ilave edilirler. Güç açıldığında, reset'e basıldığında, modlar değiştirildiğinde, programın sonunda, bir M30, G92 veya bir G52 X0 Y0 Z0 A0 B0 ile iş parçası ofseti sayfasındaki bütün G52 değerleri sıfıra (0) ayarlanacaktır. Bir G92 kullanırken (İş Koordinatı Sistemleri Kaydırma Değerinin Ayarlanması), Fanuc formatında, geçerli iş parçası koordinat sistemindeki mevcut konum, G92'nin değerleri (X, Y, Z, A, ve B) ile kaydırılır. G92 iş parçası ofsetinin değerleri, geçerli iş parçası ofseti ile G92 ile komut verilen kaydırma miktarının farkıdır.

Eğer Haas seçilirse, G52 bir grup 00 G-kodudur. Bu global bir iş parçası koordinatı kaydırmasıdır. İş parçası ofset sayfasının G52 satırına girilen değerler, bütün iş parçası ofsetlerine ilave edilirler. Bütün G52 değerleri bir G92 ile sıfıra (0) ayarlanacaktır. Bir G92 kullanırken (İş Koordinatı Sistemleri Kaydırma Değerinin Ayarlanması), Haas formatında, geçerli iş koordinat sistemindeki mevcut konum, G92'nin değerleri (X, Y, Z, A, ve B) ile kaydırılır. G92 iş parçası ofsetinin değerleri, geçerli iş parçası ofseti ile G92 ile komut verilen kaydırma miktarının farkıdır (İş Koordinatı Sistemleri Kaydırma Değerinin Ayarlanması).

G53 Kipli Olmayan Makine Koordinatı Seçimi (Grup 00)

Bu kod iş koordinatları ofsetlerini geçici olarak iptal eder ve makine koordinat sistemini kullanır. Makine koordinat sisteminde her eksen için sıfır noktası, bir Zero Return (Sıfıra Dönme) yaptırıldığında makinenin gittiği konumdur. G53, içinde komut verildiği blok için bu sisteme geri dönecektir.

G54-59 İş Koordinat Sistemi Seçimi #1 - #6 (Grup 12)

Bu kodlar altı adet kullanıcı koordinat sistemlerinden birini seçer. Eksen konumlarının gelecekteki tüm referansları yeni (G54 G59) koordinat sistemi kullanılarak yorumlanacaktır.

G60 Tek Yönlü Konumlandırma (Grup 00)

Bu G kodu, yalnızca pozitif yönden konumlandırma vermek için kullanılır. Bu sadece eski sistemlerle uyumluluk için temin edilmiştir. Kipli değildir, bu nedenle onu takip eden blokları etkilemez. Ayrıca bakınız Ayar 35.

G61 Tam Durma Modu (Grup 15)

G61 kodu kesin bir duruşu belirtmek için kullanılır. Kiplidir, bu nedenle onu takip eden blokları etkiler. Komut verilen her hareketin sonunda makine eksenlerinde kesin bir duruş elde edilecektir.

G64 G61 İptal (Grup 15)

G64 kodu kesin duruşu (G61) iptal etmek için kullanılır.

G68 Döndürme (Group 16)

(Bu G-kodu opsiyoneldir ve Dönme ve Ölçeklendirme gerektirir.)

G17, G18, G19 opsiyonel devir düzlemi, varsayılan geçerli

- A seçilen düzlemin ilk ekseni için opsiyonel dönme merkezi
- B seçilen düzlemin ikinci ekseni için opsiyonel dönme merkezi
- R derece cinsinden belirtilen opsiyonel dönüş açısı
 - Üç haneli ondalık -360.000 ila 360.000.

döndürülen eksen düzlemini oluşturmak için A G17, 18 veya 19 G68'den önce kullanılmalıdır. Örneğin: G17 G68 Annn Bnnn Rnnn;

A ve B geçerli düzlemin eksenlerine tekabül etmektedir; G17 örneği için, A X-eksenidir ve B Y-eksenidir.

Döndürmeden sonra kontrola geçirilen konumsal değerleri belirlemek için, kontrol tarafından daima bir dönme merkezi kullanılır. Eğer herhangi bir eksen dönme merkezi belirtilmezse, geçerli konum dönme merkezi olarak kullanılır.

Döndürme (G68) komutu verildiğinde, bütün X, Y, Z, I, J ve K değerleri bir dönme merkezi kullanarak belirli açı R kadar döndürülürler.

G68, G68 komutunu takip eden bloklardaki uygun olan bütün konumlandırma değerlerini etkileyecektir. G68'i içeren satırdaki değerler döndürülmezler. Yalnızca döndürme düzlemindeki değerler döndürülürler, bu nedenle, eğer G17 geçerli döndürme düzlemi ise yalnızca X ve Y değerleri etkilenir.

R adresi için pozitif bir sayı (açı) girilmesi, özelliği saatin ters yönünde döndürecektir.

Eğer döndürme açısı (R) girilmezse, o zaman döndürme açısı Ayar 72'den alınır.

G91 modunda (artışlı) Ayar 73 AÇIK halde iken, döndürme açısı R'deki değer ile değiştirilir. Diğer bir deyişle, her G68 komutu döndürme açısını R'de belirtilen değer ile değiştirecektir.

Döndürme açısı, programın başında sıfıra ayarlanır, yada G90 modunda G68 kullanarak belirli bir açıya ayarlanabilir.

Aşağıdaki örnekler G68 kullanarak döndürmeyi göstermektedir.

İlk örnek, kontrolün mevcut çalışma koordinat konumunu nasıl bir dönme merkezi olarak kullandığını göstermektedir (X0 Y0 Z0).

G68 Döndürme

Bir sonraki örnek pencerenin merkezini dönme merkezi olarak belirlemektedir.

G68 Döndürme

Bu örnek, paternleri bir merkez etrafında döndürmek için G91 modunun nasıl kullanıldığını göstermektedir. Bu çoğu kez verilen bir nokta etrafında simetrik olan parçaları yapmakta yararlıdır.

G68 Döndürme

G68 yürürlükte iken dönme düzlemini değiştirmeyin.

Ölçeklendirme ile Döndürme

Eğer ölçeklendirme ve döndürme aynı zamanda kullanılırsa, döndürmeden önce ölçeklendirmenin açılması ve ayrı blokların kullanılması önerilir. Bunu yaparken aşağıdaki şablonu kullanın.

G51 (ÖLÇEKLENDİRME) ;

G68 (DÖNDÜRME) ;

. . program

G69 (DÖNDÜRME KAPALI) ;

...

G50 (ÖLÇEKLENDİRME KAPALI) ;

Kesici Telafisi ile Döndürme

Kesici telafisi döndürme komutu verildikten sonra açılmalıdır. Döndürmeyi kapatmadan önce telafi de kapatılmalıdır.

G69 G68 Döndürme İptali (Grup 16)

(Bu G-kodu opsiyoneldir ve Dönme ve Ölçeklendirme gerektirir.)

G69 daha önce belirlenen herhangi bir döndürmeyi iptal eder.

G70 Cıvata Deliği Dairesi (Grup 00)

- I Yarıçap (+CCW / -CW)
- J Başlangıç açısı (yataydan 0 ila 360.0 derece CCW; veya 3 o'saat pozisyonu)
- L Daire etrafında eşit olarak dağıtılmış deliklerin sayısı

Kipli olmayan bu G kodu korunmalı çevrimlerden G73, G74, G76, G77 veya G81-G89 biriyle kullanılmalıdır. Bir delme veya kılavuz çekme işleminin gerçekleştiribilmesi için her pozisyonda bir korunmalı çevrim aktif olmalıdır.

G71 Cıvata Deliği Yayı (Grup 00)

- I Yarıçap (+CCW / -CW)
- J Başlangıç açısı (yataydan CCW derece)
- K'dır. Deliklerin açısal aralığı (+ veya –)
- L Delik sayısı

Kipli olmayan bu G kodu, tam daire ile sınırlı olmaması dışında G70 ile aynıdır. G71 Grup 00'a aittir ve bu yüzden kipli değildir. Bir delme veya kılavuz çekme işleminin gerçekleştiribilmesi için her pozisyonda bir korunmalı çevrim aktif olmalıdır.

G72 Bir Açı Doğrultusunda Cıvata Delikleri (Grup 00)

- I Deliklerin arasındaki mesafe (+CCW / -CW)
- J Çizginin açısı (yataydan CCW derece)
- L Delik sayısı

Kipli olmayan bu G kodu belirlenen açıdaki doğru bir çizgi üzerinde "L" tane delik deler. G70'e benzer şekilde çalışır. Bir G72'nin doğru olarak çalışması için, bir delme veya kılavuz çekme işleminin gerçekleştirilebilmesi için her pozisyonda bir korunmalı çevrim aktif olmalıdır.

Cıvata Deseni Korunmalı Çevrimleri İçin Kurallar:

1. Korunmalı çevrimin yürürtülmesinden önce takım cıvata deseninin merkezine getirilmelidir. Merkez genellikle X0, Y0'dır.

2. J kodu, açısal başlangıç konumudur ve her zaman saat üç pozisyonundan saatin tersi yönünde 0 ila 360 derecedir.

Korunmalı Çevrimlerin Döngülenmesi

Artışlı olarak döngülenmiş bir delme korunmalı çevrimi kullanan program örneği aşağıda verilmiştir.

Not: Burada kullanılan delme sırası, zamandan kazanamak ve delikten deliğe en kısa yolu izlemek üzere tasarlanmıştır.

G81 Delme Korunmalı Çevrimi (Artışlı) ve Çoklu Fikstür için Kılavuz Plakası Alt Programı

Program Örneği Açıklama % O03400 (Kılavuz plakasının delinmesi) T1 M06 G00 G90 G54 X1.0 Y-1.0 S2500 M03 G43 H01 Z.1 M08 G81 Z-1.5 F15. R.1 G91 X1.0 L9 G90 X-2.0 (Veya G91'de devam edilir ve Y-1.0 tekrar edilir) G91 X-1.0 L9 G90 Y-3.0 G91 X1.0 L9 G90 Y-4.0 G91 X-1.0 L9 G90 Y-5.0 G91 X1.0 L9 G90 Y-6.0 G91 X-1.0 L9 G90 Y-7.0 G91 X1.0 L9 I I G90 Y-8.0 G91 X-1.0 L9 G90 Y-9.0 G91 X1.0 L9 G90 Y-10.0 G91 X-1.0 L9 G00 G90 G80 Z1.0 M09 G28 G91 Y0Z0 M30 %

Korunmalı Çevrimlerinde Değişiklik Yapılması

Bu bölümde, zor parçaların progragramlanmasını kolaylaştırmak için uyarlanması gereken korunmalı çevrimleri ele alacağız.

Kelepçelerden sakınmak için G98 ve G99'ün kullanılması – Örneğin, Tablaya bir inç uzunlukta tabla kelepçesiyle bağlanmış olan köşeli bir parça. Tabla kelepçelerinden sakınmak için bir program yazılmalıdır.

Program Örneği	Açıklama
%	
O4500	
T1 M06	
G00 G90 G54 X1.0 Y-1.0 S3500 M03	
G43 H01 Z1.125 M08	
G81 G99 Z-1.500 R.05 F20.	
X2.0 G98	(Çevrimi yürüttükten sonra başlangıç noktasına dönecektir)
X6.0 G99	(Çevrimi yürüttükten sonra referans düzlemine dönecektir)
X8.0	
X10.0	
X12.0 G98	
X16.0 G99	
X18.0 G98	
G00 G80 Z2.0 M09	
G28 G91 Y0 Z0	
M30	
%	

Bir Korunmalı Çevrimde X, Y Düzlemi Engel Sakınması:

Bir korunmalı çevrim sırasında X, Y düzleminde bir engeli önlemek üzere, Z-ekseni korunmalı işlemini yürütmeksizin bir X, Y hareketi yapmak için korunmalı çevrim satırına L0 koyun.

Örneğin, her tarafta birer inçlik derinlikte flanşı olan altı inçlik kare alüminyum bloğuğa sahip olunduğunda, program flanşın her tarafında merkezlenmiş iki delik delmek ister. Bloktaki köşelerin herbirinden sakınmak için program.

Program Örneği	Açıklama
%	
O4600	(X0,Y0 sol üst köşededir, Z0 parçanın en üst kısmındadır)
T1 M06	
G00 G90 G54 X2.0 Y5 S3500 M03	
G43 H01 Z9 M08	
G81 Z-2.0 R9 F15.	
X4.0	
X5.5 L0	(açısal olarak köşeden sakınma)
Y-2.0	
Y-4.0	
Y-5.5 L0	
X4.0	
X2.0	
X.5 L0	
Y-4.0	
Y-2.0	
G00 G80 Z1.0 M09	
G28 G91 Y0 Z0	
M30	
%	

G-Kodu Korunmalı Çevrimleri

Giriş

Korunmalı çevrimler programlamayı basitleştirmek için kullanılırlar. Delme, kılavuz çekme ve delik işleme gibi tekrarlanan işlemler için kullanılırlar. Korunmalı çevrim her X ve/veya Y-ekseni hareketi programlandığında çalıştırılır.

Korunmalı Çevrimlerin Kullanımı

Korunmalı çevrimin X ve/veya Y-ekseninde konumlandırması ya mutlak (G90) ya da artışlı (G91) olarak yapılabilir. Bir korunmalı çevrimdeki artışlı (G91) hareket, çoğunlukla korunmalı çevrimin çalıştırılmasını her bir artışlı X veya Y hareketi ile belirlenen sayıda tekrarlayacak olan bir döngü sayacı (Lnn) ile kullanışlıdır.

Örnek:

G81 G99 Z-0.5 R0.1 F6.5 (Geçerli konuma bir delik delecektir)

G91 X-0.5625 L9 (eksi yönde .5625 eşit aralıklı 9 tane daha delik delecektir)

Eğer bir korunmalı çevrim bir X veya Y ve 0 (L0)'lık bir döngü sayacı olmaksızın tanımlanırsa çevrim başlangıçta çalıştırılmayacaktır. Korunmalı çevriminin çalışması, artışlı (G91) veya mutlak (G90) konumlandırmanın aktif olmasına bağlı olarak farklılık gösterecektir. Her çevrim arasında artışlı bir X veya Y hareketi ile işlemi tekrarlamak üzere kullanılabileceği için, bir korunmalı çevrimdeki artışlı hareket çoğunlukla bir döngü (L) sayacı olarak kullanışlıdır.

Örnek:

X1.25 Y-0.75 (cıvata deliği deseninin merkez konumu)

G81 G99 Z-0.5 R0.1 F6.5 L0 (G81 satırındaki L0, cıvata deliği dairesinde delmeyecektir)

bir delik

G70 I0.75 J10. L6 (6 delikli cıvata deliği dairesi)

Bir korunmalı çevrim komutu verildiğinde, bir blokta kaydedilen her X-Y konumunda o işlem yapılır. Bazı korunmalı çevrim sayısal değerleri, korunmalı çevrim tanımlandıktan sonra değiştirilebilir. Bunların en önemlileri R düzlem değeri ve Z derinlik değeridir. Eğer bunlar bir blokta XY komutları ile kaydedilirlerse, XY hareketi yapılır ve takip eden bütün korunmalı çevrimler yeni R veya Z değeri ile gerçekleştirilir.

Bir korunmalı çevrim öncesinde X ve Y-eksenlerinin konumlandırılması hızlı hareketlerle yapılır.

G98 ve G99 korunmalı çevrimlerin çalışma şeklini değiştirir. G98 aktif olduğunda, korunmalı çevrimdeki her bir deliğin tamamlanması üzerine Z-ekseni birinci başlama düzlemine dönecektir. Bu, parçanın yukarısında ve etrafındaki alanlara ve/veya kelepçeler ve bağlantılara pozisyonlandırmaya imkan tanır.

G99 aktif olduğunda, bir sonraki XY konumuna emniyet mesafesi olarak, korunmalı çevrimdeki her bir delikten sonra Z-ekseni R (hızlı) düzlemine dönecektir. G98/G99 seçimindeki değişiklikler, korunmalı çevrim komutu verildikten sonra da yapılabilir, bunlar sonraki bütün korunmalı çevrimleri etkileyecektir.

Korunmalı çevrimlerin bazıları için bir P adresi opsiyonel bir komuttur. Bu, talaşların kırılmasına yardımcı olmak için deliğin dibinde programlanmış bir duraklamadır, daha düzgün bir finiş sağlar ve daha yakın bir tolerans oluşturmak için herhangi bir takım basıncını kaldırır. Eğer P'ye bir korunmalı çevrim için bir değer girilmişse iptal edilene kadar (G00, G01, G80 veya Reset butonu) diğerlerinde de kullanılacağına dikkat edin.

G-kodu kod satırının içinde veya öncesinde bir S (iş mili hızı) komutu tanımlanmalıdır.

Bir korunmalı çevrim içindeki kılavuz çekme işlemi, bir ilerleme hızının hesaplanmasını gerektirir. Besleme Formülü:

İş mili hızı bölü kılavuzun inç başına Diş sayısı = dakikada inç cinsinden ilerleme hızı

Korunmalı çevrimler aynı zamanda Ayar 57'den de yararlanırlar. Bu ayarın AÇILMASI hızlı hareketler arasında tam bir duruş yaptıracaktır. Bu, deliğin dibinde parçanın sıyrılmasını önlemek için yararlıdır.

Not: Z, R, veF adresleri bütün korunmalı çevrimler için gerekli verilerdir.

Bir Korunmalı Çevrimin İptali

Bütün korunmalı çevrimleri iptal etmek için G80 kodu kullanılır; bir G00 veya G01 kodunun da bir korunmalı çevrimi iptal edeceğine dikkat edin. Seçildiğinde, bir korunmalı çevrim G80, G00 veya G01 ile iptal edilene kadar aktiftir.

G73 Yüksek-Hız Kademeli Delik Delme Korunmalı Çevrimi (Grup 09)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I İlk paso derinliği
- J Paso için kesme derinliğinin azaltılacağı miktar
- K'dır. Minimum kesme derinliği (Kontrol darbe sayısını hesaplayacaktır)
- L G91 (Artışlı Mod) kullanılırsa tekrarlama sayısı (Delinecek delik sayısı)
- P Deliğin dibinde duraklama (saniye olarak)
- Q Kesme Derinliği (daima artışlı)
- R R düzleminin konumu (Parça yüzeyi üzerinden mesafe)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

I, J, K, ve Q daima pozitif sayılardır.

Bir G73 programlamanın iki yöntemi vardır; birincisi I, J, K adreslerinin kullanılması, ikincisi ise K ve Q adreslerinin kullanılmasıdır.

Eğer I, J ve K belirlenmişse, İlk paso I değeri kadar girecektir, takibeden her paso J değeri kadar azaltılacaktır ve minimum kesme derinliği K'dır. Eğer P belirlenmişse, takım deliğin dibinde belirlenen süre kadar duraklayacaktır.

Eğer **K** ve **Q** her ikisi birden belirlenmişse, bu korunmalı çevrim için farklı bir çalışma modu seçilir. Bu modda, pasoların sayısı K miktarına ulaştıktan sonra takım R düzlemine geri getirilir.

G74 Ters Rijit Delme Korunmalı Çevrimi (Grup 09)

- F Dakikada inç (mm) olarak ilerleme hızı (ilerleme hızını ve iş mili hızını hesaplamak için korunmalı çevrim girişinde tanımlanan formülü kullanın)
- J Birden Çok Geri Çekilme (Ne kadar hızlı geri çekileceği Ayar 130'a bakın)
- L G91 (Artışlı Mod) kullanılırsa tekrarlama sayısı (Kılavuz çekilecek delik sayısı)
- R R düzleminin kılavuz çekmeye başlama konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

G76 Hassas Delik İşleme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- I Q belirtilmemişse, geri çekilmeden önceki X-ekseni boyunca kaydırma değeri
- J Q belirtilmemişse, geri çekilmeden önceki Y-ekseni boyunca kaydırma değeri
- L G91 (Artışlı Mod) kullanılırsa işlenecek delik sayısı
- P Deliğin altında bekleme süresi
- Q Kaydırma değeri, daima artışlıdır
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

Deliğin işlenmesine ilave olarak, bu çevrim, parçadan çıkarken takımı emniyete almak için geri çekilmeden önce X ve/veya Y eksenini kaydıracaktır. Eğer Q kullanılırsa, Ayar 27 kaydırma yönünü belirler. Eğer Q belirtilmemişse, kaydırma yönünü ve mesafesini belirlemek için opsiyonel I ve J değerleri kullanılır.

G77 Arka Delik İşleme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- I Q belirtilmemişse, geri çekilmeden önceki X-ekseni boyunca kaydırma değeri
- J Q belirtilmemişse, geri çekilmeden önceki Y-ekseni boyunca kaydırma değeri
- L G91 (Artışlı Mod) kullanılırsa işlenecek delik sayısı
- Q Kaydırma değeri, daima artışlıdır
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

Deliğin işlenmesine ilave olarak, bu çevrim, parçaya girerken ve çıkarken takımı emniyete almak için işlemeden önce ve sonra X ve/veya Y eksenini kaydırır (bir kaydırma hareketi örneği için G76'ya bakın). Ayar 27 kaydırma yönünü belirler. Eğer Q belirtilmemişse, kaydırma yönünü ve mesafesini belirlemek için opsiyonel I ve J değerleri kullanılır.

G80 Korunmalı Çevrim İptali (Grup 09)

Bu G kodu, yeni bir tanesi seçilene kadar bütün korunmalı çevrimleri işlem dışı bırakır. G00 veya G01 kullanımının bir korunmalı çevrimi iptal edeceğini de unutmayın.

G81 Delik Delme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delinecek delik sayısı
- R R düzleminin konumu (parça üzerindeki konum)
- X X-ekseni hareket komutu
- E Y-ekseni hareket komutu
- Z Deliğin dibinde Z-eksen konumu

Not: X ve Y adresleri, genellikle delinecek ilk deliğin konumudurlar.

Program Örneği

Bir alüminyum plakaya delik açan bir program aşağıda verilmektedir:

T1 M06 G00 G90 G54 X1.125 Y-1.875 S4500 M03 G43 H01 Z0.1 G81 G99 Z-0.35 R0.1 F27. X2.0 X3.0 Y-3.0 X4.0 Y-5.625 X5.250 Y-1.375 G80 G00 Z1.0 G28 M30

G82 Nokta Oyma Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- P Deliğin altında bekleme süresi
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Alt deliğin konumu

Programlama Notu: Bir bekleme (P) programlanması opsiyonunu olması dışında G82, G81 ile aynıdır

Program Örneği	Açıklama
%	
O1234	(Örnek program)
T1 M06	(Takım No.1, 0.5"x 90-derece punta matkabıdır)
G90 G54 G00 X.565 Y-1.875 S1275 M03	
G43 H01 Z0.1 M08	
G82 Z-0.175 P.3 R0.1 F10.	(90-derece punta matkabı; derinlik)
X1.115 Y-2.750	(pah çapının yarısıdır)
X3.365 Y-2.875	
X4.188 Y-3.313	
X5.0 Y-4.0	
G80 G00 Z1.0 M09	

G82 Puntalama Örneği

G83 Normal Kademeli Delik Delme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- I İlk kesme derinliğinin ölçüsü
- J Her pasoda kesme derinliğinin azaltılacağı miktar
- K'dır. Minimum kesme derinliği
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- P Son kademeli delmenin sonundaki duraklama, saniye olarak (Bekleme)
- Q Kesme derinliği, daima artışlı
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

Eğer I, J ve K belirlenmişse, ilk paso I miktarı kadar girecektir, takibeden her paso J miktarı kadar azaltılacaktır ve minimum kesme derinliği K'dır. I,J,K ile programlarken bir Q değeri kullanmayınız.

Eğer **P** belirlenmişse, takım deliğin dibinde belirlenen süre kadar duraklayacaktır. Aşağıdaki örnek birkaç kez kademeli delinecek ve 1.5 saniye bekleyecektir:

G83 Z-0.62 F15. R0.1 Q0.175 P1.5

Bir bekleme zamanı belirtmeyen bütün sonraki bloklar için aynı bekleme zamanı geçerli olacaktır.

Ayar 52, R düzlemine geri döndüğünde G83'ün çalıştığı yolu değiştirir. Gagalama hareketinin talaşların delikten çıkmasına izin verdmesini sağlama almak için, genellikle R düzlemi kesme noktasının hayli üstünde ayarlanır. Bu, makine "boşa" mesafeye delik açmaya çalışacağı için zaman kaybettirir. Eğer Ayat 52 talaşları temizlemek için gerekli olan mesafeye ayarlandıysa, R düzlemi delinen parçaya daha yakın konabilir. R'ye talaş temizleme hareketi oluştuğunda, R'nin üzerindeki Z ekseni mesafesi bu ayar tarafından belirlenecektir.

 Program Örneği
 Açıklama

 T2 M06
 (Takım No.2 bir 0.3125" matkaptır)

 G90 G54 G00 X0.565 Y-1.875 S2500 M03
 (Takım No.2 bir 0.3125" matkaptır)

 G43 H02 Z0.1 M08
 (Matkap ucu matkap çapının 1/3'üdür)

 G83 Z-0.720 Q0.175 R0.1 F15.
 (Matkap ucu matkap çapının 1/3'üdür)

 X1.115 Y-2.750
 X3.365 Y-2.875

 X4.188 Y-3.313
 Yatis Y-3.313

 X5.0 Y-4.0
 S80 G00 Z1.0 M09

G84 Frezede Kılavuz Çekme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- J Birden Çok Geri Çekilme (Örnek: J2 kesme hızının iki katından daha hızlı geri çekilecektir, bkz. Ayar 130)
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- R R düzleminin konumu (Parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

G84 Frezede Kılavuz Çekme Korunmalı Çevrim Örneği

Program	Örnek
T3 M06	(Takım No.3 bir 3/8-16 kılavuzdur)
G90 G54 G00 X0.565 Y-1.875 S900 M03	
G43 H03 Z0.2 M08	
G84 Z-0.600 R0.2 F56.25	(900 rpm bölü 16 tpi = 56.25 inç/dk)
X1.115 Y-2.750	
X3.365 Y-2.875	
X4.188 Y-3.313	
X5.0 Y-4.0	
G80 G00 Z1.0 M09	
G28 G91 Y0 Z0	
M30	
%	

- G85 Delik Delme Korunmalı Çevrimi (Grup 09)Fİnç (veya mm) bölü dakika cinsinden ilerleme hızı
 - L G91 (Artışlı Mod) kullanılırsa delik sayısı
 - R R düzleminin konumu (parça üzerindeki konum)
 - X-axis location of holes Х
 - Е Deliklerin Y-eksen konumu
 - Deliğin dibinde Z-eksen konumu Ζ

G86 Delik ve Durma Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

G87 İçeri Delik İşleme ve Manüel Geri Çekme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

Delik delindiğinde bu G kodu duracaktır. Bu noktada takım delikten dışarı elle kumanda edilerek çıkarılır. Çevrim Başlatma'ya basıldığında program çalışmaya devam edecektir.

G88 İçeri Delik İşleme, Bekleme, Manüel Geri Çekme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- P Deliğin altında bekleme süresi
- R R düzleminin konumu (parça üzerindeki konum)
- X Deliğin X-eksen konumu
- E Deliğin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

Delik delindiğinde bu G kodu duracaktır. Bu noktada takım delikten dışarı elle kumanda edilerek çıkarılır. Çevrim Başlatma'ya basıldığında program çalışmaya devam edecektir.

G89 İçeri Delik İşleme, Bekleme, Dışarı Delik İşleme Korunmalı Çevrimi (Grup 09)

- F İnç (veya mm) bölü dakika cinsinden ilerleme hızı
- L G91 (Artışlı Mod) kullanılırsa delik sayısı
- P Deliğin altında bekleme süresi
- R R düzleminin konumu (parça üzerindeki konum)
- X X-axis location of holes
- E Deliklerin Y-eksen konumu
- Z Deliğin dibinde Z-eksen konumu

G90 Mutlak Konumlama Komutları (Grup 03)

G91 Artışlı Konumlama Komutları (Grup 03)

Bu G kodları eksen komutlarının yorumlanma şeklini değiştirirler. Bir G90'ı izleyen eksen komutları eksenleri makine koordinatlarına götürecektir. Bir G91'ı izleyen eksen komutları eksenleri geçerli noktadan o mesafe kadar hareket ettirecektir. G91, G143 ile uyumlu değildir (5-Eksen Takım Boyu Telafisi).

G92 İş Koordinatı Sistemleri Kaydırma Değeri Ayarı (Grup 00)

Bu G-kodu hiçbir ekseni hareket ettirmez; yalnızca kullanıcı iş parçası ofsetleri olarak kaydedilen değerleri değiştirir. Ayar 33'e bağlı olarak G92 farklı çalışır, FANUC, HAAS, veya YASNAC koordinat sistemini seçer.

FANUC veya HAAS

Eğer ayar 33, Fanuc veya Haas'a ayarlanırsa, bir G92 komutu iş parçası koordinatlarının hepsini (G54-59, G110-129), komut verilen konum aktif iş parçası sistemindeki mevcut konum olacak şekilde kaydırır. G92 kipli değildir.

Bir G92 komutu, komut verilen eksenler için yürürlükte olan herhangi bir G52'yi iptal eder. Örnek: G92 X1.4, X-ekseni için G52'yi iptal eder. Diğer eksenler etkilenmezler.

G92 kaydırma değeri, İş Parçası Ofsetleri sayfasının altında görüntülenir ve gerekirse oradan temizlenebilir. Güç verilmesinden sonra ve ZERO RET ve AUTO ALL AXES veya ZERO SINGLE AXIS'in her kullanılışında da otomatik olarak temizlenir.

YASNAC

Eğer ayar 33, Yasnac'a ayarlanırsa, bir G92 komutu, komut verilen konum aktif iş parçası sistemindeki mevcut konum olacak şekilde G52 iş koordinat sistemini ayarlar. O zaman G52 iş parçası sistemi, başka bir iş parçası sistemi seçilene kadar otomatik olarak aktifleşir.

G93 Ters Zamanlı Besleme Modu (Grup 05)

F İlerleme Hızı (dakikadaki strok)

Bu G kodu, bütün F (besleme hızı) değerlerinin **dakikadaki strok** olarak yorumlandığını belirtir. Diğer bir deyişle, F kodunun değeri 60'a bölündüğünde, hareketin tamamlanması için geçen saniye sayısıdır.

G93 genel olarak 4 ve 5-eksen işlemlerinde kullanılır. Doğrusal ilerleme hızının (inç/dk), dönme hareketinin hesaba katıldığı bir değere çevrilmesinin bir yoludur.

G93 aktif olduğunda, bütün interpolasyon hareketi blokları için ilerleme hızının belirlenmesi zorunludur; yani, hızlı olmayan her hareket bloğu kendisine ait ilerleme hızı belirtimine sahip olmalıdır.

* RESET'e basılması makineyi G94 (Dakikadaki Besleme) moduna yeniden ayarlayacaktır.

* Ayarlar 34 ve 79 (4. ve 5. eksen çap) 93 kullanılırken gerekli değildir.

G94 Dakikadaki Besleme Modu (Grup 05)

Bu kod G93'ü (Ters Zamanlı Besleme Modu) devre dışı bırakır ve kontrolü Dakikadaki Besleme moduna geri alır.

G95 Devir Başına Besleme (Grup 05)

G95 aktif olduğunda; iş milinin bir turu, Feed (İlerleme) değeri ile belirlenen bir hareket mesafesi ile sonuçlanacaktır. Eğer Ayar 9 Ölçü Sistemi inçe ayarlanmışsa, o zaman besleme değeri F inç/dev olarak alınacaktır (MM'ye ayarlanmışsa, o zaman besleme mm/Dev olarak alınacaktır). G95 aktif iken, Besleme atlama ve İş Mili atlama makinenin davranışını etkileyecektir. Bir iş mili atlama seçildiğinde, iş mili hızındaki bir değişiklik, talaş yükünün aynı kalması için beslemedeki bir değişikliği beraberinde getirecektir. Ancak, bir besleme aşımı seçildiğinde, o zaman besleme aşımındaki bir değişiklik iş milini değil sadece ilerleme hızını etkileyecektir.

G98 Korunmalı Çevrimlerde Başlangıç Noktasına Dönme (Grup 10)

G98 kullanarak, Z-ekseni, her X ve/veya Y konumu arasında ilk başlama noktasına geri döner (korunmalı çevrimden önce blokta var olan Z konumu komut verilmiştir). Bu, parçanın yukarısında ve etrafındaki alanlara ve/veya kelepçeler ve bağlantılara pozisyonlandırmaya imkan tanır.

G99 Korunmalı Çevrimlerde R Düzlemine Dönme (Grup 10)

G99 kullanarak, Z-ekseni, her X ve/veya Y konumu arasında R düzleminde kalacaktır. Takım yolu üzerinde engeller bulunmadığında, G99 işleme zamanından kazandırır.

G100 İptal Ayna Görüntüsü (Grup 00)

G101 Etkin İkiz Görüntü (Grup 00)

- X X-ekseni komutu
- E Y-ekseni komutu
- Z Z-ekseni komutu
- A A-ekseni komutu

Proramlanabilir ayna görüntüleme, herhangi bir eksende bu işlevi açmak veya kapatmak üzere kullanılır. Birinde ON (AÇIK) olduğunda, eksen hareketi iş parçası sıfır noktası etrafında aynalanabilir (veya ters çevrilebilir). Bu G kodları, herhangi başka G kodları olmaksızın bir komut bloğunda kullanılmalıdır. Herhangi bir eksen hareketine neden olmazlar. Bir eksen görüntülendiğinde ekranın altında gösterilecektir. Aynalama görüntüsü için ayrıca Ayar 45 'den 48 'e kadar bakın.

Ayna Görüntüsünü açıp kapatmak için format:

G101 X09 = X ekseni için ayna görüntülemeyi açacaktır.

G100 X09 = X ekseni için ayna görüntülemeyi kapatacaktır.

-Ø-

Ayna Görüntüsü ve Kesici Telafisi

Ayna görüntüleme ile kesici telafisi kullanırken, bu yönergeyi izleyin: Ayna görüntülemeyi G100 veya G101 ile açtıktan veya kapattıktan sonra, sıradaki hareket bloğu birinciden farklı bir iş koordinat konumuna olmalıdır. Aşağıdaki kod bir örnektir:

Doğru:	Yanlış:
G41 X1.0 Y1.0	G41 X1.0 Y1.0
G01 X2.0 Y2.0	G01 X2.0 Y2.0
G101 X0	G101 X0
G00 Z1.0	G00 Z1.0
G00 X1.0	G00 X2.0 Y2.0
G00 X2.0 Y2.0	
G40	G40.

X veya Y eksenlerinden yalnızca bir tanesinin aynalanması, kesici hareketinin kesme güzergahının karşı tarafı boyunca olmasına sebep olacaktır. Ek olarak, eğer ayna görüntüleme dairesel bir hareket düzleminin (G02, G03) sadece bir ekseni için açılırsa, o zaman bu komutlar ters çevrilirler, sol ve sağ kesici telafi komutları (G41, G42) da ters çevrilirler.

Not: Bir şekli XY hareketleri ile frezelerken, Ayna Görüntü'nün (Mirror Image) X veya Y eksenlerinden sadece biri için açılması eş yönlü frezelemeyi, zıt yönlü frezelemeye ve/veya zıt yönlü frezelemeyi, eş yönlü frezelemeye değiştirecektir. Sonuç olarak, istenmiş olan kesme tipi veya kalitesi elde edilemeyebilir. X ve Y'nin her ikisinin de ayna görüntülenmesi bu sorunu giderecektir.

Ayna Görüntüsü ve Cep Frezeleme

X-Ekseninde Ayna Görüntüleme için Program Kodu:

Program Örneği

Açıklama

%

O3600 T1 M06 G00 G90 G54 X-.4653 Y.052 S5000 M03 G43 H01 Z.1 M08 G01 Z-.25 F5. M98 P3601 F20. G00 Z.1 G101 X0. X-.4653 Y.052 (Ayna görüntü X ekseni) (Takım No1 0.250" çapında bir parmak frezedir) G01 Z-.25 F5. M98 P3601 F20. G00 Z.1 G100 X0. G28 G91 Y0 Z0 M30 % % O3601 (Kontur alt programı) G01 X-1.2153 Y.552 G03 X-1.3059 Y.528 R.0625 G01 X-1.5559 Y.028 G03 X-1.5559 Y-.028 R.0625 G01 X-1.3059 Y-.528 G03 X-1.2153 Y-.552 R.0625 G01 X-.4653 Y-.052 G03 X-.4653 Y.052 R.0625 M99 %

G102 RS-232'ye Programlanabilir Çıktı (Grup 00)

- X X-ekseni komutu
- E Y-ekseni komutu
- Z Z-ekseni komutu
- A A-ekseni komutu

Bir G102 komutu verilmesi, ilk RS-232 portuna eksenlerin mevcut iş koordinatlarını gönderir, buradan bir bilgisayar kullanılarak gönderilen bilgiler kaydedilir. G102 komut bloğunda geçen her eksen RS-232 portuna, programda görüntülenen değerlerin aynı formatında çıktı verirlir. Bir G102, herhangi başka G kodları olmaksızın bir komut bloğunda kullanılmalıdır. Herhangi bir eksen hareketine yol açmayacaktır, eksenlerin değerlerinin bir etkisi yoktur.

Ayrıca Ayar 41 ve Ayar 25'e bakın. Gönderilen değerler, daima geçerli iş koordinat sistemine referans verilen mevcut eksen konumlarıdır.

Bu G-kodu bir parçayı problamak için yararlıdır (G31'e de bakın). Prob parçaya dokunduğunda, bir sonraki kod satırı eksenlerin konumunu, koordinatların kaydedilmesi için bir bilgisayara göndermek üzere bir G102 olabilir. Gerçek bir parçayı alarak elektronik bir kopyasını çıkaran bir parçanın sayısallaştırılması olarak adlandırılır. Bu fonksiyonu tamamlayabilmek için kişisel bilgisayarlara ek yazılım gereklidir.

G103 Blok Tamponlama Sınırı (Grup 00)

Kumandanın önden okunacağı azami blok sayısı (0-15 Aralığı), örneğin:

G103[P..]

Bu genellikle, makine hareketleri sırasında kontrolün arka planda ne yaptığını tanımlamak için kullanılan "Blok Önden Okuma" olarak adlandırılır. Kumanda gelecek blokları (kod satırları) zamanın ilerisinde hazırlar. Mevcut blok çalışırken, bir sonraki blok sürekli hareket için halihazırda yorumlanmış ve hazırlanmıştır.

G103 P0 programlandığında, blok sınırlaması devreden çıkarılır. G103, bir P adres kodu olmadan görülürse blok sınırlama da devreden çıkarılır. G103 Pn programlandığında, ileri bakma n bloklarına sınırlanır.

G103, ayrıca makro programları ayıklarken yararlıdır. Makro ifadeleri önden okuma süresi sırasında yapılır. Örneğin, bir G103 P1'i program içine ekleyerek, makro ifadeleri mevcut çalışan blokların bir blok öncesinde gerçekleştirilecektir.

G107 Silindirik Eşleme (Grup 00)

- X X-ekseni komutu
- E Y-ekseni komutu
- Z Z-ekseni komutu
- A A-ekseni komutu
- Q Silindirik yüzeyin çapı
- R Döner eksenin yarıçapı

Bu G kodu, belirlenmiş bir doğrusal eksende meydana gelen bütün programlanmış hareketi, bir silindirin yüzeyindeki denk harekete çevirir, (döner bir eksene bağlanmış olarak) aşağıdaki şekilde gösterildiği gibi. Bu bir grup 0 G kodudur, ancak varsayılan çalışması Ayar 56'ya bağlıdır (M30 Varsayılan G'yi Geri Yükler). G107 komutu silindirik eşlemeyi ya açmak ya da kapatmak için kullanılır.

• Herhangi bir doğrusal eksen programı, herhangi bir döner eksene silindirik olarak eşlenebilir (her seferinde bir tane).

• Mevcut bir doğrusal eksenli G-kodu programı, programın başına bir G107 komutu yerleştirerek silindirik olarak eşlenebilir.

• Silindirik yüzeyin yarıçapı (veya çapı) yeniden tanımlanabilir, programı değiştirmek zorunda kalmadan silindirik eşlemenin farklı çaplardaki yüzeyler üzerinde olmasına imkan tanır.

• Silindirik yüzeyin yarıçapı (veya çapı), Ayar 34 ve 79'da belirlenen döner eksen çap(lar)ıyla ya senkronize edilebilir ya da bağımsız olabilir.

• Silindir bir yüzeyin varsayılan çapını ayarlamak için de G107 kullanılabilir,

etkili olabilecek herhangi bir silidir haritalamadan bağımsız olarak.

G107 Tanımlama

Bir G107'yi üç adres kodu izleyebilir: X, Y veya Z; A veya B; ve Q veya R.

X, **Y**, veya **Z**: Bir X, Y, veya Z adresi, belirlenen döner eksene (A veya B) eşleme yapılacak doğrusal ekseni belirtir. Bu doğrusal eksenlerden biri belirlendiğinde, aynı zamanda bir döner eksen de belirlenmelidir.

A veya B: Bir A veya B adresi, silindirik yüzeyi hangi döner eksenin kontrol edeceğini tanımlar.

Q veya **R**: Q silindirik yüzeyin çapını, R de yarıçapını tanımlar. Q veya R kullanıldığında, bir döner eksen de belirlenmelidir. Eğer Q da R de kullanılmazsa, o zaman en son G107 çapı kullanılır. Güç verildiğinden beri hiçbir G107 komutu verilmemişse yada en son belirlenmiş değer sıfır ise, o zaman bu döner eksen için çap Ayar 34 ve/veya 79'daki değer oalacaktır. Q veya R belirlendiğinde, bu değer belirlenmiş olan döner eksen için yeni G107 değeri olacaktır.

G-kodu programının her bittiğinde de silindirik eşleme otomatik olarak kapatılacaktır, ancak yalnız Ayar 56 AÇIK ise. RESET tuşuna basılması, Ayar 56'nın durumuna bakmaksızın halen yürürlükte olan bir silindirik eşlemeyi kapatacaktır.

Yarıçapı belirlemek için R uygun olsa da, daha karmaşık G02 ve G03 programlaması için I, J ve K'nin kullanılmasını önerilir.

Örnek

% O0079 (G107 TEST) T1 M06 (.625 DIA. 2FL E.M.) G00 G40 G49 G80 G90 G28 G91 A0 G90 G00 G54 X1.5 Y0 S5000 M03 G107 A0 Y0 R2. (EĞER R VEYA Q DEĞERİ YOKSA, MAKİNE AYAR 34'DEKİ DEĞERİ KULLANACAKTIR) G43 H01 Z0.25 G01 7-0.25 F25 G41 D01 X2, Y0.5 G03 X1.5 Y1. R0.5 G01 X-1.5 G03 X-2. Y0.5 R0.5 G01 Y-0.5 G03 X-1.5 Y-1. R0.5 G01 X1.5 G03 X2. Y-0.5 R0.5 G01 Y0. G40 X1.5 G00 Z0.25 M09 M05 G91 G28 Z0. G28 Y0. G90 G107 M30 %

G110-G129 Koordinat Sistemi #7-26 (Grup 12)

Bu kodlar ek iş koordinat sistemlerinden birini seçer. Eksen konumlarına daha sonra yapılacak tüm referanslar yeni koordinat sisteminde yorumlanacaktır. G110'dan G129'a kadar kodların çalışması, G54'den G59'a kadar kodların çalışması ile aynıdır.

G136 Otomatik İş Parçası Ofseti Merkezi Ölçümü (Grup 00) (Bu G-kodu opsiyoneldir ve bir prob gerektirir)

- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I X-ekseni boyunca opsiyonel ofset mesafesi
- J Y-ekseni boyunca opsiyonel ofset mesafesi
- K'dır. Z-ekseni boyunca opsiyonel ofset mesafesi
- X Opsiyonel X-ekseni hareket komutu
- E Opsiyonel Y-ekseni hareket komutu
- Z Opsiyonel Z-ekseni hareket komutu

Otomatik İş Parçası Ofseti Merkezi Ölçümü (G136), bir proba iş parçası ofsetlerini ayarlama komutu vermek için kullanılır. G136 iş parçasına iş miline bağlı bir probla dokunmak üzere makine eksenlerini ilerletecektir. Eksen (eksenler) probdan bir sinyal gelene veya hareket sınırına ulaşılana kadar hareket edecektir.

Bu fonksiyon icra edildiğinde takım ofsetleri (G41, G42, G43 veya G44) aktif olmamalıdır. Programlanan her eksen için halihazırda aktif olan iş koordinat sistemi ayarlanır. İlk noktayı yerleştirmek için bir M75 ile beraber G31 kullanın. G136, prob noktası ile bir M75 tarafından belirlenen nokta arasındaki çizginin ortasına iş koordinatlarını yerleştirecektir. Bu, iki ayrı prob noktası kullanılarak parçanın merkezinin bulunmasına imkan tanır.

Eğer bir I, J, veya K belirlenmişse, uygun eksen iş parçası ofseti I, J, veya K komutundaki miktar kadar kaydırılır. Bu, iş parçası ofsetinin, probun gerçekte parçaya dokunduğu noktadan uzağa kaydırılmasına imkan tanır.

Notlar: Ayrıca G31'e bakın. Probla dokunulan noktalar Ayar 59 ve 62'deki değerler kadar ofset yaptırılırlar. G36 kullanırken G91 artışlı hareketleri kullanın. Bir bekleme ile iş mili probunu açıp kapatmak için saptanan M-kodlarını kullanın (M53 ve M63). Örnek: M53 G04 P100 M63 Bir deliğin merkezini problamak için programlama örneği: O1234 (G136) M53 G04 P100 M63 G00 G90 G54 X0 Y0 Z-17. G91 G01 Z-1. F20. G31 X1. F10. M75 G01 X-1. G136 X-1. F10. G01 X1. M53 G04 P100 M63 G00 G90 G53 Z0 M30 Bir deliğin merkezini problamak için programlama örneği: O1234 (G136) M53 G04 P100 M63 G00 G90 G54 X0 Y5. Z-17. G91 G01 Z-1. F20. G31 Y-1. F10. M75 G01 Y1. F20. G00 Z2. Y-10. G01 Z-2. F20. G136 Y1. F10. G01 Y-1. M53 G04 P100 M63 G00 G90 G53 Z0 M30

G141 3D+ Kesici Telafisi (Grup 07)

- X X-ekseni komutu
- E Y-ekseni komutu
- Z Z-ekseni komutu
- A A-ekseni komutu (opsiyonel)
- B B-ekseni komutu (opsiyonel)
- D Kesici Ebatı Seçimi (kipli)
- I Program güzergahından X-ekseni kesici telafisi yönü
- J Program güzergahından Y-ekseni kesici telafisi yönü
- K'dır. Program güzergahından Z-ekseni kesici telafisi yönü
- F G93 veya G94'de ilerleme hızı (G94'de kipli)

Bu özellik üç boyutlu kesici telafisi gerçekleştirir.

Kalıp şu şekildedir:

G141 Xnnn Ynnn Znnn Innn Jnnn Knnn Fnnn Dnnn

Sonraki satırlar şunlar olabilir:

G01 Xnnn Ynnn Znnn Innn Jnnn Knnn Fnnn Veva

G00 Xnnn Ynnn Znnn Innn Jnnn Knnn

Bazı CAM sistemleri I, J, K için X, Y, ve Z çıkarabilirler. I, J, ve K değerleri kontrole makinede telafi uygulanacak yönü söyler.

I, J, ve K takımın merkezinden CAM sistemindeki takımın temas noktasına ilişkili normal yönü belirtir. Takım güzergahını doğru yönde kaydırabilmek için kontrol tarafından I, J, ve K vektörleri istenir. Telafi değeri pozitif veya negatif yönde olabilir.

Takım için yarıçap veya çapa girilen (Ayar 40) ofset miktarı takım hareketleri 2 veya 3 eksenli olsa da güzergahı bu miktar kadar telafi edecektir.

Sadece G00 ve G01, G141'i kullanabilir. Bir Dnn programlanmalıdır, D-kodu hangi ofsetin kullanılacağını seçer. G93 besleme komutu her bir blokta gereklidir.

Bir ünite vektörü ile, I2 + J2 + K2 1'e eşit olmalıdır.

Sadece komut edilen bloğun uç noktası I, J, ve K yönünde telafi edilir. Bu nedenle bu telafi sadece sıkı bir toleransı olan yüzey takım güzergahları için önerilir (kod blokları arasında küçük hareket).

En iyi sonuçlar için bilyeli uçlu parmak freze kullanarak takım merkezinden programlayın.

G141 Örnek:

T1 M06 G00 G90 G54 X0 Y0 Z0 A0 B0 G141 D01 X0.Y0. Z0. (3 EKS İLE HIZLI KONUM K TELAFİ) G01 G93 X.01 Y.01 Z.01 I.1 J.2 K.9747 F300. (BESLEME TERS ZAMAN) X.02 Y.03 Z.04 I.15 J.25 K.9566 F300. X.02 Y.055 Z.064 I.2 J.3 K.9327 F300. . . X2.345 Y.1234 Z-1.234 I.25 J.35 K.9028 F200. (SON HAREKET) G94 F50. (İPTAL G93) G0 G90 G40 Z0 (Sıfıra Hızlı, Kesici Telafisi İptal) X0 Y0 M30

G143 5-Eksen Takım Boyu Telafisi + (Grup 08)

(Bu G-kodu opsiyoneldir; yalnızca üzerindeki bütün döner hareketin kesici takımın hareketi olduğu makineler için geçerlidir.)

Bu G kodu, bir CAD/CAM işlemcisine gerek duyulmadan kullanıcının kesici takımların boylarındaki değişimleri düzeltmesine imkan tanır. Bir H kodunun mevcut uzunluk telafi tablolarından takım boyunu seçmesi gerekir. Bir G49 veya H00 komutu 5-eksen telafiyi iptal edecektir. G143'ün doğru olarak çalışması için iki tane döner eksen olmalıdır, A ve B. G90, mutlak konumlandırma modu aktif olmalıdır (G91 kullanılamaz.) A ve B eksenleri için iş parçası konumu 0,0 takım Z-ekseni hareketi ile paralel olacak şekilde olmalıdır.

G143'ün arkasındaki maksat, başlangıçta gelen takımla yedek bir takım arasındaki takım boy farkının telafi edilmesidir. G143'ün kullanılması, yeni bir takım boyu vermek zorunda kalmadan programı çalıştırmasına imkan tanır.

G143 takım boy telafisi yalnızca hızlı (G00) ve doğrusal besleme (G01) hareketleri ile çalışır; diğer hiçbir besleme fonksiyonları (G02 veya G03) veya korunmalı çevrimler (delik delme, kılavuz çekme, vs.) kullanılamaz. Pozitif bir takım boyu için, Z-ekseni yukarı doğru hareket edecektir (+ yönde). Eğer X, Y veya Z'den bir tanesi programlanmadıysa, o eksende hiçbir hareket olmayacaktır, A veya B'nin hareketi yeni bir takım boyu vektörü oluştursa bile. Bu nedenle, tipik bir program bir blokluk veride 5 eksenin hepsini de kullanacaktır. A ve B eksenleri için telafi yapmak üzere G143 bütün eksenlerin komut verilen hareketini etkileyebilir.

G143 kullanılırken ters besleme modu (G93) önerilir. Aşağıda bir örnek verilmiştir:

T1 M06 G00 G90 G54 X0 Y0 Z0 A0 B0 G143 H01 X0. Y0. Z0. A-20. B-20. (HIZLI KONUM 5EKS TELAFİ İLE) G01 G93 X.01 Y.01 Z.01 A-19.9 B-19.9 F300. (BESLEME TERS ZAMAN) X0.02 Y0.03 Z0.04 A-19.7 B-19.7 F300. X0.02 Y0.055 Z0.064 A-19.5 B-19.6 F300. X2.345 Y.1234 Z-1.234 A-4.127 B-12.32 F200. (SON HAREKET) G94 F50. (İPTAL G93) G0 G90 G49 Z0 (SIFIRA HIZLI, 5 EKS TELAFİ İPTAL) X0 Y0 M30

G150 Genel Amaçlı Cep Frezeleme (Grup 00)

- D Takım yarıçapı/çap ofseti seçimi
- F İlerleme hızı
- I X-ekseni kesme artışı (pozitif değer)
- J Y-ekseni kesme artışı (pozitif değer)
- K'dır. Son ölçüye getirme pasosu (pozitif değer)
- P Cep geometrisini tanımlayan alt program sayısı
- Q Artışlı Z-ekseni her bir pasodaki kesme derinliği (pozitif değer)
- R Hızlı R-düzlemi konum yeri
- S Opsiyonel iş mili hızı
- X X başlangıç pozisyonu
- E Y başlangıç pozisyonu
- Z Cebin nihai derinliği

G150 kesicinin, cebin içindeki başlangıç noktasına pozisyonlanması ile başlar, dış hatla devam eder, ve bir son ölçü işlemesi ile tamamlanır. Parmak freze Z-ekseni içinde dalacaktır. Cep üzerinde X ve Y eksenlerindeki G01, G02, ve G03 hareketlerini kullanarak kapalı bir alanın cep geometrisini tanımlayan bir alt program P### çağrılır. G150 komutu, P-kodu tarafından belirtilen bir N-sayısı ile dahil alt program araması yapacaktır. Bulunamadığında kontrl harici bir alt program araması yapacaktır. O da bulunamadığında, 314 Alt program Bellekte Yok alarmı verilecektir.

NOT: Alt programdaki G150 cep geometrisini tanımlarken, cep şekli kapandıktan sonra başlangıç deliğine geri hareket etmeyin.

Bir I veya J değeri her bir kesme kademesi üzerinde kesicinin hareket ettiği pürüz alma miktarını tanımlar. Eğer I kullanılırsa, cebin X-eksenindeki bir dizi kademeli kesimlerle pürüzleri alınır. Eğer J kullanılırsa, kademeli kesimler Y-eksenindedir.

K komutu cep üzerindeki bir son geçiş miktarını tanımlar. Bir K değeri belirtilmişse, son geçiş için cep geometrisinin iç tarafının etrafında K miktarı kadar bir son geçiş gerçekleştirilir ve son Z derinliğinde yapılır. Z derinliği için son ölçüye getirme pasosu komutu yoktur.

R değeri sıfır (R0) olsa bile belirlenmelidir; yoksa R için en son belirlenen değer kullanılacaktır.

Cep alanındaki çoklu geçişler, R düzleminden başlayarak, her bir Q (Z-ekseni derinliği) geçişi ile son derinliğe kadar yapılır. G150 komutu, K ile malzeme bırakarak, daha sonra Z derinliğine ulaşılana kadar Q'daki değer kadar besledikten sonra cebin iç tarafından I veya J geçişleri kadar pürüz alarak, ilk önce cep geometrisi etrafında bir geçiş yapacaktır.

Q komutu, Z derinliğine sadece bir geçiş isteniyor olsa da G150 satırında olmalıdır. Q komutu R düzleminden başlar.

Notlar: Alt program (P) 40 cep geometrisi harketlerinden daha fazla olmamalıdır.

Q komutu, Z derinliğine sadece bir geçiş isteniyor olsa da G150 satırında olmalıdır. Q komutu R düzleminden başlar.

G150 kesicisi için son derinliğe (Z) bir başlangıç noktası delmek gerekli olabilir. Daha sonra parmak frezeyi G150 komutunun cebi içindeki XY eksenlerindeki başlangıç konumuna konumlandırın.

Örnek

O01001 T1 M06 G90 G54 G00 X3.25 Y4.5 S1200 M03 G43 H01 Z1.0 M08

G83 Z-1.5 Q0.25 R0.1 F20. G53 G49 Z0 T2 M06 (.5" Parmak freze) G54 G90 G00 X3.25 Y4.5 S1450 M03 G43 H02 Z1.0 M08

G150 X3.25 Y4.5 Z-1.5 G41 J0.35 K.01 Q0.8 R.1 P2001 D02 F15. (Yanlarda 0.01" son ölçüye getirme pasosu (K)) G40 X3.25 Y4.5

(G150 Cep örneği)

(T1 Parmak freze için boşluk deliği deler)

(Cep başlangıç noktası)

(Takım boyu ofseti, bir Z başlangıç noktasına hızlı, soğutma sıvısını açık)

(Kademeli delik delme çevrimi)

(Z'yi referans konumuna geri döndürür)

(T2 Cebi Z derinliğine iki geçişte keser)

(Cep başlangıç noktası)

(Takım boyu ofseti, bir Z başlangıç noktasına hızlı, soğutma sıvısını açık)

(Kesici telafisini iptal eder ve başlangıç noktasına geri konumlar)

G53 G49 Y0 Z0 M30 O02001 G01 Y7 X1.5 G03 Y5.25 R0.875 G01 Y2.25

G03 Y0.5 R0.875

G03 Y2.25 R0.875

G01 X5.

G01 Y5.25 G03 Y7. R0.875 G01 X3.25 (Z'yi referans konumuna geri döndürür)
(Ana programın sonu)
(G150 cep geometrisi için alt program olarak ayrı bir program)
(Bir G01 ile cep geometrisi üzerine ilk hareket)
(Aşağıdaki satırlar cep geometrsini tanımlar)

(Cep geometrisini kapatır. Başlangıca geri dönme.) (Ana programa geri dönüş)

Kare Cep

M99

G150 Çalışmaları için Cep Frezeleme

5.0 x 5.0 x 0.500 DP. Kare Cep

Ana Program	Alt program
%	%
O01001	O01002
T1 M06 (Takım No. 1 0.500" çapında bir parmak frezedir)	G01 Y2.5 (1)
G90 G54 G00 X0. Y1.5 (XY Başlangıç Noktası)	X-2.5 (2)
S2000 M03	Y-2.5 (3)
G43 H01 Z0.1 M08	X2.5 (4)
G01 Z0.1 F10.	Y2.5 (5)
G150 P1002 Z-0.5 Q0.25 R0.01 J0.3 K0.01 G41 D01 F10.	X0. (6) (Cep Döngüsünü Kapatır)
G40 G01 X0. Y1.5	M99 (Ana programa geri dönüş)
G00 Z1. M09	%
G53 G49 Y0. Z0.	
M30	
%	
G150 satırında P#### komutu tarafından bir alt program çağrısının Mutlak ve Artışlı örnekleri:

Mutlak Alt Program	Artışlı Alt Program
%	%
O01002 (G150 için G90 alt programı)	O01002 (G150 için G91 alt programı
G90 G01 Y2.5 (1)	G91 G01 Y0.5 (1)
X-2.5 (2)	X-2.5 (2)
Y-2.5 (3)	Y-5. (3)
X2.5 (4)	X5. (4)
Y2.5 (5)	Y5. (5)
X0. (6)	X-2.5 (6)
M99	G90
%	M99
	%

Kare Ada

G150 Kare Ada ile Cep Frezeleme Programı

5.0 x 5.0 x 0.500 DP. Kare Ada ile Kare Cep

Ana Program	Alt program
%	%
O02010	O02020 (O02010'da G150 için alt program
T1 M06 (Takım 0.500" çapında bir parmak frezedir)	G01 Y1. (1)
G90 G54 G00 X2. Y2. (XY Başlangıç Noktası)	X6. (2)
S2500 M03	Y6. (3)
G43 H01 Z0.1 M08	X1. (4)
G01 Z0.01 F30.	Y3.2 (5)
G150 P2020 X2. Y2. Z-0.5 Q0.5 R0.01 I0.3 K0.01 G41 D01 F10.	X2.75 (6)
G40 G01 X2.Y2.	Y4.25 (7)
G00 Z1.0 M09	X4.25 (8)
G53 G49 Y0. Z0.	Y2.75 (9)
M30	X2.75 (10)

Y3.8 (11) X1. (12) Y1. (13) X2. (14) (Cep Döngüsünü Kapatır) M99 (Ana programa geri dönüş) %

Yuvarlak Ada

G150 Yuvarlak Ada ile Cep Frezeleme Programı

5.0 x 5.0 x 0.500 DP. Yuvarlak Ada ile Kare Cep

Ana Program	Alt program
%	%
O03010	O03020 (O03010'da G150 için alt program)
T1 M06 (Takım 0.500" çapında bir parmak frezedir)	G01 Y1. (1)
G90 G54 G00 X2. Y2. (XY Başlangıç Noktası)	X6. (2)
S2500 M03	Y6. (3)
G43 H01 Z0.1 M08	X1. (4)
G01 Z0. F30.	Y3.5 (5)
G150 P3020 X2. Y2. Z-0.5 Q0.5 R0.01 J0.3 K0.01 G41 D01 F10.	X2.5 (6)
G40 G01 X2. Y2.	G02 I1. (7)
G00 Z1. M09	G02 X3.5 Y4.5 R1. (8)
G53 G49 Y0. Z0.	G01 Y6. (9)
M30	X1. (10)
%	Y1. (11)
	X2. (12) (Cep Döngüsünü Kapatır)
	M99 (Ana programa geri dönüş)
	%

G153 5-Eksen Yüksek Hız Kademeli Delik Delme Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I İlk kesme derinliğinin ölçüsü (pozitif bir değer olmalıdır)
- J Her pasoda kesme derinliğini azaltma miktarı (pozitif bir değer olmalıdır)
- K'dır. Minimum kesme derinliği (pozitif bir değer olmalıdır)
- L Tekrarların sayısı
- P Son darbelemenin sonundaki duraklama, saniye olarak
- Q Kesme değeri (pozitif bir değer olmalıdır)
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Bu, geri çekilme mesafesinin Ayar 22 ile belirlendiği yüksek hızlı kademeli çevrimidir.

Eğer I, J, ve K belirlenmişse, farklı bir çalışma modu seçilir. İlk paso I miktarı kadar kesecektir, takibeden her paso J miktarı kadar azaltılacaktır ve minimum kesme derinliği K'dır. Eğer P kullanılmışsa, takım deliğin dibinde belirlenen süre kadar duraklayacaktır.

Bir bekleme zamanı belirtmeyen bütün sonraki bloklar için aynı bekleme zamanının geçerli olacağına dikkat edin.

G154 İş Koordinatlarının Seçimi P1-99 (Grup 12)

Bu özellik 99 ek iş parçası ofsetleri sağlar. 1'den 99'a kadar bir P değerli G154 ek iş parçası ofsetlerini aktive eder. Örneğin, G154 P10 ek iş parçası ofsetleri listesinden iş parçası ofseti 10'u seçer. G110-G129'un, G154 P1'den P20'ye olarak aynı iş parçası ofsetlerine karşılık geldiğini unutmayın; metodlardan birini kullanarak seçilebilirler. Bir G154 iş parçası ofseti aktifken, üst sağ iş parçası ofsetinin başlangıcı G154 P değerini gösterecektir.

G154 iş parçası ofseti formatı

```
#14001-#14006 G154 P1 (ayrıca #7001-#7006 ve G110)
#14021-#14026 G154 P2 (ayrıca #7021-#7026 ve G111)
#14041-#14046 G154 P3 (ayrıca #7041-#7046 ve G112)
#14061-#14066 G154 P4 (ayrıca #7061-#7066 ve G113)
#14081-#14086 G154 P5 (avrica #7081-#7086 ve G114)
#14101-#14106 G154 P6 (ayrıca #7101-#7106 ve G115)
#14121-#14126 G154 P7 (avrica #7121-#7126 ve G116)
#14141-#14146 G154 P8 (ayrıca #7141-#7146 ve G117)
#14161-#14166 G154 P9 (ayrıca #7161-#7166 ve G118)
#14181-#14186 G154 P10 (ayrıca #7181-#7186 ve G119)
#14201-#14206 G154 P11 (avrica #7201-#7206 ve G120)
#14221-#14221 G154 P12 (ayrıca #7221-#7226 ve G121)
#14241-#14246 G154 P13 (ayrıca #7241-#7246 ve G122)
#14261-#14266 G154 P14 (ayrıca #7261-#7266 ve G123)
#14281-#14286 G154 P15 (ayrıca #7281-#7286 ve G124)
#14301-#14306 G154 P16 (avrica #7301-#7306 ve G125)
#14321-#14326 G154 P17 (ayrıca #7321-#7326 ve G126)
#14341-#14346 G154 P18 (avrica #7341-#7346 ve G127)
#14361-#14366 G154 P19 (ayrıca #7361-#7366 ve G128)
#14381-#14386 G154 P20 (ayrıca #7381-#7386 ve G129)
#14401-#14406 G154 P21
#14421-#14426 G154 P22
#14441-#14446 G154 P23
#14461-#14466 G154 P24
#14481-#14486 G154 P25
#14501-#14506 G154 P26
#14521-#14526 G154 P27
#14541-#14546 G154 P28
#14561-#14566 G154 P29
#14581-#14586 G154 P30
#14781-#14786 G154 P40
#14981-#14986 G154 P50
#15181-#15186 G154 P60
#15381-#15386 G154 P70
#15581-#15586 G154 P80
#15781-#15786 G154 P90
#15881-#15886 G154 P95
#15901-#15906 G154 P96
#15921-#15926 G154 P97
#15941-#15946 G154 P98
```

#15961-#15966 G154 P99

G155 5-Eksen Ters Kılavuz Çekme Korunmalı Çevrimi (Grup 09)

G155 yalnızca yüzer kılavuzları çalıştırır. G174, 5-eksen geri rijit kılavuz çekme için uygundur.

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- L Tekrarların sayısı
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu
- S İş Mili Hızı

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır. Bu konum "İlk Başlama konumu" olarak kullanılır.

Bu korunmalı çevrimden önce kumanda iş milini saatin ters yönünde (CCW) otomatik olarak çalıştıracaktır.

G161 5-Eksen Delme Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Örnek

(DEL SAĞ, ÖN) T4 M6 G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu) G143 H4 Z14.6228 M8 G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu) G161 E.52 F7. (Korunmalı Çevrim) G80 X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu) M5 G1 G28 G91 Z0. G91 G28 B0. A0. M01

G162 5-Eksen Noktasal Delik Delme Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- P Deliğin altında bekleme süresi
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Örnek

```
( DÜZ DEL SAĞ, ÖN )
T2 M6
G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu)
G143 H2 Z14.6228 M8
G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu)
G162 E.52 P2.0 F7. (Korunmalı Çevrim)
G80
X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu)
M5
G1 G28 G91 Z0.
G91 G28 B0. A0.
M01
```


G163 5-Eksen Normal Kademeli Delik Delme Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- I İlk kesme derinliğinin opsiyonel ölçüsü
- J Her pasoda kesme derinliğini azaltma opsiyonel miktarı
- K'dır. Opsiyonel asgari kesme derinliği
- P Son darbelemenin sonundaki opsiyonel duraklama, saniye olarak
- Q Fazla kesme değeri, daima artan
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Eğer I, J ve K belirlenmişse, ilk paso I miktarı kadar girecektir, takibeden her paso J miktarı kadar azaltılacaktır ve minimum kesme derinliği K'dır.

Bir **P** değeri kullanılmışsa, en son darbelemeden sonra takım deliğin dibinde belirlenen süre kadar duraklayacaktır. Aşağıdaki örnek birkaç kez darbeleyecek ve sonunda bir buçuk saniye bekleyecektir: G163 E0.62 F15. Q0.175 P1.5.

Bir bekleme zamanı belirtmeyen bütün sonraki bloklar için aynı bekleme zamanının geçerli olacağına dikkat edin.

Ayar 52, **başlama konumuna** döndüğünde G163'ün çalışma şeklini de değiştirir. Gagalama hareketinin talaşların delikten çıkmasına izin verdmesini sağlama almak için, genellikle **R** düzlemi kesme noktasının hayli üstünde ayarlanır. Bu, makine "boşa" mesafeye delik açmaya çalışacağı için zaman kaybettirir. Eğer Ayar 52 talaşları temizlemek için gerekli olan mesafeye ayarlandıysa, **başlangıç konumu** delinen parçaya daha yakın konabilir. **Başlangıç konumuna** talaş temizleme hareketi oluştuğunda, **Z** ekseni **başlangıç konumunun** üzerine bu ayarda verilen miktar kadar getirilecektir.

Örnek

```
( KADEMELİ DELME SAĞ, ÖN )
T5 M6
G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu)
G143 H5 Z14.6228 M8
G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu)
G163 E1.0 Q.15 F12. (Korunmalı Çevrim)
G80
X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu)
M5
G1 G28 G91 Z0.
G91 G28 B0. A0.
M01
```


G164 5-Eksen Kılavuz Çekme Korunmalı Çevrimi (Grup 09)

G164 yalnızca yüzer kılavuzları çalıştırır. G174/184, 5-eksen rijit kılavuz çekme için uygundur.

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu
- S İş Mili Hızı

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır. Bu korunmalı çevrimden önce kumanda iş milini saat yönünde (CW) otomatik olarak çalıştıracaktır.

Örnek

```
(1/2-13 KILAVUZ)
T5 M6
G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S500M3 F360. (Boşluk Konumu)
G143 H5 Z14.6228 M8
G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu)
G164 E1.0 F38.46 (Korunmalı Çevrim)
G80
X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu)
M5
G1 G28 G91 Z0.
G91 G28 B0. A0.
M01
```

G165 5-Eksen Delik Delme Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Örnek

(Delik Delme Çevrimi) T5 M6 G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu) G143 H5 Z14.6228 M8 G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu) G165 E1.0 F12. (Korunmalı Çevrim) G80 X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu) M5 G1 G28 G91 Z0. G91 G28 B0. A0. M01

G166 5-Eksen Delik İşleme ve Durma Korunmalı Çevrimi (Grup 09)

- E Başlangıç noktasından deliğin dibine olan mesafeyi belirler.
- F İnç (mm) bölü dakika cinsinden ilerleme hızı
- A A-ekseni takım başlama konumu
- B B-ekseni takım başlama konumu
- X X-ekseni takım başlama konumu
- E Y-ekseni takım başlama konumu
- Z Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Örnek

(Delme ve Durdurma Çevrimi) T5 M6 G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu) G143 H5 Z14.6228 M8 G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu) G166 E1.0 F12. (Korunmalı Çevrim) G80 X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu) M5 G1 G28 G91 Z0. G91 G28 B0. A0. M01

G169 5-Eksen Delik İsleme ve Bekleme Korunmalı Çevrimi (Grup 09)

- Başlangıç noktasından deliğin dibine olan mesafeyi belirler. Е
- F İnc (mm) bölü dakika cinsinden ilerleme hızı
- Р Deliğin altında bekleme süresi
- А A-ekseni takım baslama konumu
- B-ekseni takım başlama konumu В
- Х X-ekseni takım başlama konumu
- Е Y-ekseni takım başlama konumu
- Ζ Z-ekseni takım başlama konumu

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır.

Örnek

(Delme ve Bekleme Cevrimi) T5 M6 G01 G54 G90 X8.4221 Y-8.4221 B23. A21.342 S2200 M3 F360. (Boşluk Konumu) G143 H5 Z14.6228 M8 G1 X6.6934 Y-6.6934 Z10.5503 F360. (İlk Başlangıç konumu) G169 E1.0 P5.0 F12. (Korunmalı Çevrim) G80 X8.4221 Y-8.4221 B23. A21.342 Z14.6228 (Boşluk Konumu) M5 G1 G28 G91 Z0. G91 G28 B0. A0. M01

G174 CCW Dik Olmayan Rijit Kılavuz Çekme (Grup 00)

G184 CW Dik Olmayan Rijit Kılavuz Çekme (Grup 00) F

- İnç (mm) bölü dakika cinsinden ilerleme hızı
- Х Deliğin dibindeki X konumu
- Е Deliğin dibindeki Y konumu
- Ζ Deliğin dibindeki Z konumu
- S İs Mili Hızı

Korunmalı çevrim komutu verilmeden önce belirli bir X, Y, Z, A, B konumu programlanmalıdır. Bu konum "Başlama konumu" olarak kullanılır.

Bu G kodu, dik olmayan deliklere rijit kılavuz çekmek için kullanılır. Dik açılı bir kafa ile üç eksenli bir frezede X veya Y ekseninde rijit kılavuz cekmek icin veya bes eksenli bir freze ile rastgele bir acı boyunca rijit kılavuz çekmek için kullanılabilir. İlerleme hızı ile iş mili hızı arasındaki oran, tam olarak açılan dişin adımı olmalıdır.

Bu korunmalı çevrimden önce iş milini başlatmaya gerek yoktur; kumanda bunu otomatik olarak yapar.

G187 Düzgünlük Seviyesinin Ayarlanması (Grup 00)

G-187, bir parça kesimi sırasında hem düzgünlüğü hem de maks. köşe yuvarlatma değerini ayarlayabilen ve kontrol edebilen bir doğruluk komutudur. G187'yi kullanmak için format **G187 Pn Ennnn**.

P Düzgünlük seviyesini kontrol eder, P1 (kaba), P2 (orta), veya P3 (son).

E Geçici olarak Ayar 85'i atlayarak maksimum köşe yuvarlatma değerini ayarlar.

G187 aktif olduğunda, Ayar 191 varsayılan düzgünlüğü kullanıcı tanımlı "kaba", "orta" veya "son" seçeneklerinden birine ayarlar. "Orta (medium)" ayarı fabrika varsayılan ayarıdır. **NOT:** Ayar 191'in "Finish (Son)" olarak ayarlanması bir parçanın işlenmesinin daha uzun sürmesine neden olacaktır. Bu ayarı sadece en iyi cilaya ihtiyaç duyduğunuzda kullanın.

G187 Pm Ennnn hem düzgünlüğü hem de maks. köşe yuvarlatma değerini ayarlar. **G187 Pm** düzgünlüğü ayarlar ancak maks. köşe yuvarlatma değerini mevcut değerinde bırakır. **G187 Ennnn** maks. köşe yuvarlatma değerini ayarlar ancak düzgünlüğü mevcut değerinde bırakır. **G187 Ennnn** maks. köşe yuvarlatma değerini ayarlar ancak düzgünlüğü mevcut değerinde bırakır. **G187** kendi başına E değerini iptal eder ve düzgünlüğü Ayar 191'de belirtilen varsayılan düzgünlüğe ayarlar. "Reset"e her basıldığında, M30 veya M02 çalıştırıldığında, program sonuna ulaşıldığında, veya E-stop (Acil Durma) düğmesine basıldığında G187 iptal edilecektir.

G188 Program: PST'den Al (Group 00)

Yüklenmiş olan palet için Palet Planlama Tablosu girişine bağlı olarak parça programını çağırır.

M kodları (Çeşitli Fonksiyonlar)

M-Kodu Giriş

M-Kodları makine için eksensiz hareket komutlarıdır. Bir M kodu formatı iki numara ile devam eden "M" harfidir, örneğin M03.

Her kod satırı için sadece bir M kodu programlanabilir. Tüm M kodları bloğun sonunda etkili olurlar.

M00 Durdurma Programı

M00 kodu bir programı durdurmak için kullanılır. Eksenleri ve iş milini durdurur, soğutma sıvısını kapatır (Takım İçerisinden Su Verme dahil). Program editöründe görüntülendiğinde bir sonraki blok (M00'dan sonraki blok) seçilecektir. Cycle Start (Çevrim Başlatma) butonuna basılması ile program işletimi seçili bloktan devam edecektir.

M01 Opsiyonel Program Durdurması

M01, Opsiyonel Durdurma özelliğinin açık olması gerekmesinin dışında M00 ile aynı şekilde çalışır.

M02 Program Sonu

M02 kodu bir programı sonlandırmak için kullanılır. Bir programı sonlandırmanın en çok kullanılan yolunun M30 kullanmak olduğunu unutmayın.

M03 / M04 / M05 İş Mili Komutları

M03 İleri yönde iş milini açar

M04 ters yönde iş milini açar

M05 İş milini durdurur

İş mili hızı bir S adres kodu ile kumanda edilir, örneğin, S5000 bir iş miline 5000 dev/dak komutu verecektir.

NOT: Bir M04 komutu ile Takım İçerisinden Su Verme (TSC) ile birlikte çalıştırılması önerilmez.

M06 Takım Değiştirme

M06 kodu takımları değiştirmek için kullanılır, örneğin M06 T12 bu takım 12'yi iş mili içine koyacaktır. İş mili çalışıyorsa, iş mili ve soğutma sıvısı (TSC dahil) M06 komutu tarafından durdurulacaktır.

M07 Duş Soğutma Sıvısı

M kodu opsiyonel duş soğutma sıvısı pompasını etkinleştirir. Pompa, standart soğutma sıvısını da kapatan M09 tarafından kapatılır. Opsiyonel duş soğutma sıvısı bir takım veya palet değiştirilmesinden önce otomatik olarak kapatılır ve bir takım değiştirme dizisinden önce AÇIK olması halinde, değiştirme yapıldıktan sonra otomatik olarak yeniden başlatılacaktır.

M08 Soğutma Sıvısı Açık / M09 Soğutma Sıvısı Kapalı

M08 kodu opsiyonel soğutma sıvısı beslemesini açacak ve bir M09 kodu kapatacaktır. Ayrıca opsiyonel P-Cool için M34/M35 ve opsiyonel Takım İçerisinden Su Verme için M88/89'a bakın.

NOT: Soğutma sıvısı durumu sadece programın başında kontrol edilir, bu sebeple düşük bir soğutma sıvısı durumu çalışan bir programı durdurmayacaktır.

M10 4. Eksen Freni Kavrama/ M11 4. Eksen Freni Ayırma

Bu kodlar opsiyonel 4. eksene freni uygulayacak ve ayıracaktır. Fren normalde sıkılıdır, böylece M10 komutu sadece freni ayırmak için bir M11 kullanıldığında gereklidir.

M12 5. Eksen Freni Kavrama / M13 5. Eksen Freni Ayırma

Bu kodlar opsiyonel 5. eksene freni uygulayacak ve ayıracaktır. Fren normalde sıkılıdır, böylece M12 komutu sadece freni ayırmak için bir M13 kullanıldığında gereklidir.

M16 Takım Değiştirme

Bu M kodu M06 gibi hareket eder. Buna rağmen M06 takım değiştirme komutu için tercih edilen metoddur.

M17 APC Paleti Ayırma ve APC Kapısı Açma/ M18 Palet Sıkma ve Kapı Kapama

Bu M kodu palet değiştiriciler ile birlikte dik işleme merkezleri üzerinde kullanılır. Bu sadece bir bakım/test fonksiyonu olarak kullanılır. Palet değişiklikleri sadece M50 komutu ile komut edilmelidir.

M19 İş Mili Yönlendirme (P ve R değerleri opsiyonel özelliklerdir)

Bu kod iş milini bir konuma ayarlamak için kullanılır. Bununla birlikte, İş mili bu opsiyonel özelliği olmadan sadece sıfır konumuna yönlenecektir.

Opsiyonel İş Mili Yönlendirme fonksiyonu P ve R adres kodlarına izin verir. Örneğin, M19 P270, iş milini 270 dereceye yönlendirecektir. R-değeri programlayıcının dört ondalık kesime kadar tanımlayabilmesini sağlar, örneğin, M19 R123.4567.

M21-M28 Opsiyonel Kullanıcı M-Fin ile M Fonksiyonu

M21 ile M28 arasındaki M kodları kullanıcı röleleri için seçmelidir; her bir M kodu opsiyonel rölelerden birini aktive edecektir. Reset (Sıfırlama) tuşu, bitirmek için bir röle-hareketli aksesuar için bekleyen herhangi bir işlemi sonlandırır. Ayrıca bkz. M51-58 ve M61-68.

I/O PCB üzerindeki bazı veya tüm M21-25 (Takımhane, Ofis ve Mini frezeler üzerindeki M21-M22) fabrika montajlı seçenekler için kullanılabilir. Rölelerin hangisinin bağlantılı ve hangilerinin kullanılabilir olduğunu kontrol edin. Daha ayrıntılı bilgi için satıcınıza başvurun.

M-Kodu Röleleri

Bu çıktılar probları, yardımcı pompaları veya sıkma aygıtlarını vb. aktive etmek için kullanılabilirler. Yardımcı aygıtlar tek röle için elektriksel olarak terminal şeridine bağlıdırlar. Terminal şeridinin Normalde Açık (NO), Normalde Kapalı (NC) ve Ortak (COM) konumları vardır.

Ana I/O PCB M-Kodu Röleleri

Opsiyonel M-Kodu Röle Kartı (Ana I/O PCB'nin altına bağlanmış)

Opsiyonel 8M-Kodu Röleleri

İlave M-Kodu rölesi fonfsiyonları 8'in gruplarından sağlanabilir. Makineye, 16 ilave çıktı için azami iki 8M-kodu rölesi kartı takılabilir.

Haas sisteminde 8 rölelerinin toplam 4 sırası mümkündür, bunlar 0 ila 3 arasında numaralandırılır. 0 ve 1 sıraları ana I/O PCB'ye dahildir. Sıra 1, IOPCB'nin üzerinde M21-25 rölelerini kapsar. Sıra 2, ilk 8M opsiyon PCB'sini gösterir. Sıra 3, ikinci 8M opsiyon PCB'sini gösterir.

NOT: Sıra 3 bazı Haas yüklü opsiyonları için kullanılabilir ve mevcut olmayabilir. Daha ayrıntılı bilgi için satıcınıza başvurun.

Her seferinde çıktıların sadece bir sırası M-kodları ile adreslenebilir. Bu, parametre 352 "Röle Sırası Seçimi" tarafından denetlenir. Aktive edilmemiş sıralardaki röleler sadece makro değişkenleri M59/69 ile erişilebilirlerdir. Parametre 352, standart olarak "1"e ayarlı sevkedilir.

NOT: Herhangi bir problama opsiyonu ile, Parametre 352 '1' olarak ayarlanmalıdır. 8M seçeneği yüklü olduğunda, rölelerine M59/69 kullanarak erişin

M30 Program Sonu ve Sıfırlama

M30 kodu bir programı durdurmak için kullanılır. İş milini durdurur ve soğutma sıvısını kapatır (TSC dahil) ve program oku programın başlangıcına geri döner. M30 takım boyu ofsetlerini iptal eder.

M31 Talaş Konveyörü İleri / M33 Talaş Konveyörü Durma

M31 opsiyonel talaş konveyörü motorunu ileri yönde başlatır; talaşları makineden atacak yönde. Kapı açıksa konveyör dönmeyecektir. Talaş burgusunun aralıklı olarak kullanılması önerilir. Sürekli işlem motorun aşırı ısınmasına yol açacaktır.

Talaş konveyörünü Çalıştırma ve Durdurma da opsiyonel konveyör yıkamasını çalıştırır.

M33 Konveyör hareketini durdurur.

M34 Soğutma Sıvısı Artış / M35 Soğutma Sıvısı Azaltım

M34, opsiyonel P-Cool valfini mevcut konumdan bir konum uzağa hareket ettirir (referans konumundan daha uzağa).

M35 soğutma sıvısı valfini referans konumununa doğru bir konum hareket ettirir.

Soğutma sıvısı musluğunu elle döndürmeyin. Ciddi motor hasarı meydana gelecektir. M36 Palet Parçası Hazır

Palet değiştiricili makinelerde kullanılır. Bu M kodu, Parça Hazır butonuna basılana kadar palet değişimini erteler. Palet hazır butonuna basıldıktan sonra bir palet değişimi gerçekleşecektir (ve kapılar kapatılır). Örneğin:

Onnnnn (program numarası) M36 ("Part Ready (Parça Hazır)" ışığı yanıp söner, buton basılana kadar bekleyin) M50 (Parça Hazır butonuna basıldıktan sonra, palet değiştirme gerçekleştirin) (Parça Programı) M30

M39 Takım Taretini Döndürme

Takım değişimleri M06 kullanılarak komut edilmelidir. M39 normal olarak gerekli değildir ancak diyagnostik işlemleri için veya bir takım değiştirici çarpmasını kurtarmak için yararlıdır.

M39 kodu bir takım değişimi gerçekleştirmeden yana monteli takım değiştiriciyi döndürmek için kullanılır. İstenilen takım cebi numarası (Tn) M39'dan önce programlanmalıdır.

M41 / M42 Düşük / Yüksek Vites Atlama

Şanzımanlı makinelerde M41 komutu makineyi düşük viteste tutmak için kullanılır ve M42 makineyi yüksek viteste tutacaktır. Normal olarak iş mili hızı (Snnn) şanzımanın olması gereken vitesi saptayacaktır.

M46 Palet Yüklü ise Atlar

Bu M kodu, Q kodu tarafından belirtilen palet halihazırda yüklenmişse, kumandanın P kodu tarafından belirtilen satır numarasına aktarılmasını sağlar.

Örnek: M46Qn Pnn

Eğer palet n yüklü ise geçerli programda nn satırına atlanır yoksa bir sonraki bloğa gidilir.

M48 Mevcut Programın Geçerliliğini Kontrol Eder

Bu M kodu palet değiştirici makineler için bir koruma olarak kullanılır. Mevcut program (palet) Palet Planlama Tablosunda listelenmemişse alarm 909 (910) görüntülenecektir.

M49 Paletin Durumunu Ayarlar

Bu M kodu P kodu tarafından belirtilen paletin durumunu Q kodu tarafından belirtilen değere ayarlar. Olası Q kodları şunlardır; 0-Unscheduled (Plansız) 1-Scheduled (Planlı) 2-Loaded (Yüklü) 3-Completed (Tamamlandı) 4 ile 29 arasındakiler kullanıcı tanımlıdır. Palet durumu sadece görüntüleme amaçlıdır. Kumanda bunun herhangi bir değerde olmasına bağlı değildir ancak eğer 0, 1, 2, veya 3 olursa, kumanda bunu gerektiği şekilde güncelleyecektir.

Örnek: M49Pnn Qmm nn paletinin statüsünü bir mm değerine ayarlar.

Bir P-kodu olmaksızın bu komut mevcut yüklü paletin statüsünü tespit eder.

M50 Palet Değişimini Çalıştırır

Bir palet değişikliği gerçekleştirmek için bir P değeri veya palet planlama tablosu ile birlikte kullanılır. Ayrıca palet değiştirici bölümüne bakın.

M51-M58 Opsiyonel Kullanıcı M Kodlarını Ayarlar

M51 ila M58 arasındaki kodlar kullanıcı arayüzleri için opsiyoneldir. Rölelerden birini aktive edecekler ve aktif olarak bırakacaklardır. Bunları kapatmak için M61-68 kullanın. RESET tuşu bu rölelerin tümünü kapatacaktır.

Detaylar için M-Kodu rölelerinde M21-M28'e bakın.

M59 Çıkış Rölesini Ayarlar

Bu M kodu bir röleyi açar. Bunun kullanımına bir örnek **M59 Pnn**dir, burada "nn" açılan rölenin sayısıdır. 1100 ila 1155 aralığındaki ayrı çıkış rölelerinin herhangi birini açmak için bir M59 komutu kullanılabilir. Makroları kullanırken, M59 P1103, kod satırının sonunda işleme alınması dışında opsiyonel makro komutu #1103=1'in kullanılması ile aynı işlemi yapar.

NOT: 8M #1, 1140-1147 adreslerini kullanır.

M61-M68 Opsiyonel Kullanıcı M Kodlarını Siler

M61 ila M68 arasındaki kodlar kullanıcı arayüzleri için opsiyoneldir. Rölelerden birini kapatacaklardır. Bunları açmak için M51-58 kullanın. Reset tuşu bu rölelerin tümünü kapatacaktır. Detaylar için M-Kodu rölelerinde M21-M28'e bakın.

M69 Çıkış Rölesini Siler

Bu M kodu bir röleyi kapatır. Bunun kullanımına bir örnek **M69 Pnn**dir, burada "nn" kapatılan rölenin sayısıdır. 1100 ila 1155 aralığındaki çıkış rölelerinin herhangi birini kapatmak için bir M69 komutu kullanılabilir. Makroları kullanırken, M69 P1103, kod satırının sonunda işleme alınması dışında opsiyonel makro komutu #1103=0'ın kullanılması ile aynı işlemi yapar.

M75 G35 veya G136 Referans Noktasını Ayarlar

Bu kod G35 ve G136 komutları için referans noktasını ayarlamak için kullanılır. Bir izleme fonksiyonundan sonra kullanılmalıdır.

M76 Kumanda Ekranı Devredışı / M77 Kumanda Ekranı Devrede

Bu kodlar ekran göstergesini devreden çıkarmak ve devreye sokmak için kullanılırlar. Bu M kodu, aksi takdirde makinenin hareketlerinin komutlanmasının gerekebileceği ve ekranın yenilenmesinin işletme gücünden alacağı için büyük bir karmaşık programın çalıştırılması sırasında faydalıdır.

M78 Atlama Sinyali Bulunduğunda Alarm verir

Bu M kodu bir prob ile birlikte kullanılır. Programlanmış bir atlama fonksiyonu (G31, G36 veya G37) probdan bir sinyal aldığında M78 alarm verir. Bir atlama sinyali beklenmediğinde kullanılır ve bir prob çarpışması gösterebilir. Bu kod, atlama G-kodu olarak veya herhangi bir blok sonrasında aynı satıra konulabilir.

M79 Atlama Sinyali Bulunamadığında Alarm verir

Bu M kodu bir prob ile birlikte kullanılır. Programlanmış bir atlama fonksiyonu (G31, G36, veya G37) probdan bir sinyal almadığında M79 alarm verir. Bu, atlama sinyalinin olmaması bir prob konumlandırma hatası anlamına geldiğinde kullanılır. Bu kod, atlama G-kodu olarak veya herhangi bir blok sonrasında aynı satıra konulabilir.

M80 Otomatik Kapı Açma / M81 Otomatik Kapı Kapama

M80 Otomatik Kapıyı açar ve M81 Otomatik Kapıyı kapatır. Kapı hareket halinde olduğunda kumanda askısı bip sesi çıkarır.

M82 Takım Ayırma

Bu kod takımı iş milinden ayırmak için kullanılır. Bu sadece bir bakım/test fonksiyonu olarak kullanılır. Takım değişimleri M06 kullanılarak komut edilmelidir.

M83 Otomatik Hava Tabancası Açık / M84 Otomatik Hava Tabancası Kapalı

Bir M83 Hava Tabancasını açar, ve bir M84 kapatacaktır. Buna ek olarak, bir M83 Pnnn (nnn mili saniye cinsindendir) belirtilen süre için açacaktır, daha sonra otomatik olarak kapatacaktır. Otomatik Hava Tabancası ayrıca manuel olarak "Coolant (Soğutma Sıvısı)" butonunu takiben "Shift (Üst Karakter)" butonuna basılarak açılır ve kapatılır.

M86 Takım Sıkma

Bu kod bir takımı iş mili içine kelepçeler. Bu sadece bir bakım/test fonksiyonu olarak kullanılır. Takım değişimleri M06 kullanılarak komut edilmelidir.

M88 Takım İçerisinden Su Verme Açık / M89 Takım İçerisinden Su Verme Kapalı

M88 kodu takım içerisinden su verme (TSC) opsiyonunu açmak, M89 soğutma sıvısını kapatmak için kullanılır.

Bir boydan boya delik ile doğru takım işlemi TSC sisteminin kullanımından önce yapılmalıdır. Takım işlemi kullanımındaki hata iş mili kafasını aşırı soğutma sıvısı ile dolduracaktır ve bu garantiyi geçersiz kılacaktır. TSC açıkken bir M04 (Mil Geri) komutu çalıştırmak önerilmez.

Yedek Program

Not: M88 komutu iş mili hızı komutundan önce olmalıdır.

T1 M6; (TSC Delik Açma İşlemi Boyunca Soğutma Sıvısı) G90 G54 G00 X0 Y0; G43 H06 Z.5; M88; (TSC'yi açar) S4400 M3; G81 Z-2.25 F44. R.03; M89 G80; (TSC'yi kapatır) G91 G28 Z0; M30;

M95 Uyku Modu

Uyku modu aslında uzun bir bekleme süresidir (duraklama). Uyku modu, kullanıcı, operatörler geldiğinde kullanıma hazır olması için makinenin kendi kendini ısıtmasını başlatmak istediğinde kullanılır. M95 komutunun formatı şu şekildedir: M95 (hh:mm)

M95'i takip eden ifade makinenin uyuyacağı saatleri ve dakikaları içermelidir. Örneğin, saat şimdi öğleden sonra 6 ve kullanıcı makinenin ertesi sabah 6:30'a kadar uyumasını istedi, aşağıdaki komut kullanılacaktır:

M95 (12:30)

M95'i takip eden satır(lar) eksen hareketleri ve iş mili ısıtma komutları olmalıdır.

M96 Girdi Yoksa Atlar

- P Koşullu test karşılandığında gidilecek program bloğu
- Q Test edilecek ayrı giriş değişkeni (0'dan 63'e)

Bu kod bir ayrı girişin 0 (kapalı) durumu açısından test edilmesi için kullanılır. Kumanda için bir alarm oluşturacak otomatik iş parçası tutma veya diğer aksesuarların durumunu kontrol etmek için yararlıdır. Q değeri, diyagnostik ekranında bulunan girdilerle uyuşan 0 ila 63 aralığında olmalıdır (En yüksek sol girdi 0 ve en az sağ girdi 63'tür). Bu program çalıştırıldığında ve Q tarafından belirtilen giriş sinyali 0 değerine sahip olduğunda, program bloğu Pnnnn gerçekleştirilir (Pnnnn satırı aynı programda olmalıdır).

M96 Örnek: N05 M96 P10 Q8 N10	(Test giriş #8, Kapı Anahtarı, kapatılana kadar); (Program döngüsünün başlangıcı);
	(Makinenin parçasını programlar);
N85 M21 N90 M96 P10 Q2 N95 M30	(Harici bir kullancı fonksiyonu çalıştırır) 7 (Yedek giriş [#27] 0 ise N10'a döngü); (Yedek giriş 1 ise programı bitirir);

M97 Yerel Alt Program Çağrısı

Bu kod, aynı program içinde bir satır numarası (N) tarafından gösterilen bir alt programı çağırmak için kullanılır. Bir kod gereklidir ve aynı program içinde bir satır numarası ile uyuşmalıdır. Bir program içindeki basit alt yordamlar için yararlıdır; ayrı bir program gerektirmez. Alt yordam bir M99 ile bitmelidir. M97 bloğundaki bir L**nn** kodu, **nn** defa alt yordam çağırısını tekrarlayacaktır.

M97 Örnek: 000011 (M97 ÇAĞRISI) T1 M06 G00 G90 G54 X0 Y0 S1000 M03 G43 H01 Z1. G01 Z0 F20. M97 P1000 L5 (L5 programın N1000 satırını beş kere çalıştırmasına neden olacaktır) G00 G90 Z1. M30 N1000 (M97 P1000 sonrasında çalışacak olan N satırı çalışır) G01 G91 Z-0.1 G90 X2. G91 Z-0.1 G90 X0 M99

M98 Alt Program Çağrısı

Bu kod, bir alt programı çağırmak için kullanılır, format M98 Pnnnn'dir (Pnnnn çağrılan program sayısıdır). Alt program program listesinde olmalıdır, ve ana programa dönmek için bir M99 içermelidir. Lnn sayımı M98'i içeren satır üzerine konulabilir ve bir sonraki bloğa devam etmeden önce alt yordamın nn defa çağırılmasına neden olacaktır.

O00012 (M98 ÇAĞRISI)	(Ana Program numarası)
T1 M06	
G00 G90 G54 X0 Y0 S1000 M03	
G43 H01 Z1.	
G01 Z0 F20.	
M98 P1000 L5	(Alt programı çağırır, Alt program Sayısı, Döngü 5 defa)
G00 G90 Z1.	
M30	(Programın sonu)
O01000 (M98 ALT)	(Alt Program Numarası)
G01 G91 Z-0.1	
G90 X2.	
G91 Z-0.1	
G90 X0	
M99	

M99 Alt Program Geri Dönüşü veya Döngüsü

Bu kod, bir alt-programdan veya makrodan ana programa dönmek için kullanılır, format M99 Pnnnn'dir (Pnnnn ana programda dönülecek satırdır). Ana programda kullanıldığında, ana programın durmadan başlangıca geri dönmesine neden olacaktır.

Programlama Notları - Aşağıdaki kodu kullanarak Fanuc davranışının benzeri yapılabilir:

program çağırma:	Haas	Fanuc
	O0001	O0001
	N50 M98 P2	N50 M98 P2
	N51 M99 P100	
		N100 (buradan devam edin)
	N100 (buradan devam edin)	
		M30
	M30	
alt program:	O0002	O0002
	M99	M99 P100

M99 ile Makrolar - Makine opsiyonel makrolarla donatılmışsa, küresel bir değişken kullanabilir ve alt program içine **#nnn=dddd** ekleyerek ve daha sonra alt program çağrısının ardından **M99 P#nnn** kullanarak atlamak için bir blok tanımlanabilir.

M104 Prob Kolunu Uzatma / M105 Prob Kolunu Geri Çekme

Prob kolunu uzatmak veya geri çekmek için programda kullanılır.

M109 İnteraktif Kullanıcı Girişi

Bu M kodu ekran üzerine bir kısa ileti (mesaj) yerleştirmek için bir G-kodu programına izin verir. 500 ila 599 aralığındaki bir makro değişkeni bir P kodu ile tanımlanmalıdır. Program, ASCII karakterin ondalık eşitliğini karşılaştırarak klavyeden girilebilen herhangi bir karakteri kontrol edebilir (G47, Metin Yazma, ASCII karakterlerinin listesine sahiptir).

Aşağıdaki örnek program kullanıcıya bir Evet veya Hayır sorusu soracaktır, daha sonra bir "Y" (Evet) veya bir "N" (Hayır) girilene kadar bekleyecektir. Diğer tüm karakterler reddedilecektir.

N1 #501= 0.	(Değişkeni sil)
N5 M109 P501	(1 dak uyuma?)
IF [#501 EQ 0.] GOTO5 (Bir tuş i	çin bekler)
IF [#501 EQ 89.] GOTO10	(Y)
IF [#501 EQ 78.] GOTO20	(N)
GOTO1	(Kontrole devam eder)
N10	(Bir Y girilmiştir)
M95 (00:01)	
GOTO30	
N20	(Bir N girilmiştir)
G04 P1.	(1 saniye hiçbir şey yapmaz)
N30	(Durur)
M30	

Aşağıdaki örnek program kullanıcıdan bir sayı seçmesi istenecektir, daha sonra 1, 2, 3,4 veya 5 girilene kadar bekleyecektir; diğer tüm karakterler yok sayılacaktır.

% O01234 (M109 Program) N1 #501= 0 (#501 Değişkenini Sil) (#501 değişkeni kontrol edilecektir) (Operatör asağıdaki seçimlerden birisini girer) N5 M109 P501 (1,2,3,4,5) IF [#501 EQ 0] GOTO5 (Girise kadar klavye giris döngüsünü bekleyin) (49-53 ten ondalık eşdeğer 1-5 'i temsil eder) IF [#501 EQ 49] GOTO10 (1 was entered go to N10) IF [#501 EQ 50] GOTO20 (2 was entered go to N20) IF [#501 EQ 51] GOTO30 (3 was entered go to N30) IF [#501 EQ 52] GOTO40 (4 was entered go to N40) IF [#501 EQ 53] GOTO50 (5 was entered go to N50) GOTO1 (bulunana kadar kullanıcı giriş döngülerini aramaya devam et) N10 (1 girildiyse bu alt rutini calıştır) (10 dakikalığına uyku moduna gir) #3006= 25 (Döngü başlangıcı 10 dakikalığına uyku moduna girer) M95 (00:10) GOTO100 N20 (2 girildiyse bu alt rutini çalıştır) (Programlanmış mesaj) #3006= 25 (Programlanmış mesaj döngü başlangıcı) GOTO100 N30 (3 girildiyse bu alt rutini çalıştır) (Alt program 20'yi çalıştır) #3006= 25 (Döngü başlangıcı 20 dakika boyunca çalışır) G65 P20 (Alt program 20'yi çağır) GOTO100 N40 (4 girildiyse bu alt rutini çalıştır) (Alt program 22'yi calıştır) #3006= 25 (Döngü başlangıcı 22 dakika boyunca calışacaktır) M98 P22 (Alt program 22'yi çağır) GOTO100 N50 (5 girildiyse bu alt rutini calıştır) (Programlanmış mesaj) #3006= 25 (Sıfırlama veya döngü başlatma gücü kapatacaktır) #1106= 1 N100 M30 %

Ayarlar

Ayar sayfaları, kullanıcının değiştirmeye ihtiyaç duyabileceği ve makine işlemini kontrol eden değerleri içerir. Birçok ayar operatör tarafından değiştirilebilir. Sol tarafta kısa bir tanım ve sağ tarafta değerinin önünde yeralırlar.

Ekran üzerindeki ayarlar fonksiyonel olarak benzer montaj sayfalarının içine düzenlenmiştir. Bu kullanıcının ayarların nerede olduğunu hatırlamasını kolaylaştırır ve ayarlar ekranında gezerken sarfedilen zamanı azaltır. Aşağıdaki liste başlık olarak sayfa başlığı ile sayfa gruplarına bölünmüştür.

İstenilen ayara gitmek için dikey ok tuşlarını kullanın. Ayara bağlı olarak, yeni bir sayı girerek değiştirilebilir veya ayar belirli değerlere sahipse, seçenekleri görüntülemek için yatay ok tuşlarına basınız. Bir değeri girmek veya değiştirmek için Write (Yaz) tuşuna basın. Ekranın üst kısmının yakınındaki mesaj seçili ayarın nasıl değiştirileceğini gösterir.

Aşağıdakiler her bir ayarın detaylı açıklamasıdır:

1 - Auto Power Off Timer (Otomatik Güç Kesme Zamanlayıcısı)

Bu ayar belli bir bekleme süresinden sonra makinenin gücünü otomatik olarak kapatmak için kullanılır. Bu ayara girilen değer, makine gücü kapatılana kadar rölantide kalacağı dakikaların sayısıdır. Bir program çalışırken makinenin gücü kapatılmayacaktır, ve düğmeye basıldığında süre (dakikaların sayısı) sıfırdan başlayacaktır veya el kumandası kullanılacaktır. Otomatik kapatma sırası güç kapatılmasından önce operatöre 15 saniyelik bir uyarı verir, herhangi bir tuşa basılması güç kapatmayı durduracaktır.

2 - Power Off at M30 (M30'da Güç Kapatma)

Bu ayar "On (Açık)" olarak ayarlanırsa bir programın sonunda (M30) makinenin gücünü kapatır. Bir M30'a ulaşıldığında makine operatöre 30 saniyelik bir uyarı verir. Herhangi bir tuşa basılması sırayı durduracaktır.

3 - 3D Grafikler

3D Grafikler.

4 - Graphics Rapid Path (Grafik Hızlı Güzergahı)

Bu ayar Grafik modunda bir programın görüntülenme şeklini değiştirir. Kapalı olduğunda, hızlı kesmeyen takım hareketleri bir güzergah bırakmaz. Açık olduğunda, hızlı takım hareketleri ekranda kesikli çizgi bırakır.

5 - Graphics Drill Point (Grafik Delme Noktası)

Bu ayar Grafik modunda bir programın görüntülenme şeklini değiştirir. On (Açık) olduğunda, Z-eksenindeki hareket ekranda bir X işareti bırakacaktır. Off (Kapalı) olduğunda, garfik ekranında hiçbir ilave işaret gösterilmez.

6 - Front Panel Lock (Ön Panel Kilidi)

"On (Açık)" olarak ayarlandığında İş Mili CW (saat yönü) ve CCW (saat yönünün tersi) düğmelerini devreden çıkarır.

7 - Parameter Lock (Parametre Kilidi)

Bu Ayarın On (açık) olarak ayarlanması parametrelerin değiştirilmesini durdurur, 81-100 parametreleri hariç. Kumandaya güç verildiğinde, bu ayarın açık olacağını unutmayın.

8 - Prog Memory Lock (Program Hafızası Kilidi)

Bu Ayar, On (Açık) olarak ayarlandığında hafıza düzenleme fonksiyonlarını (Değiştirme, Ekleme, vb.) kilitler.

9 - Dimensioning (Boyutlandırma)

Bu ayar inç ve metrik mod arasında seçim yapar. İnç olarak ayarlandığında, X, Y, ve Z için programlanmış üniteler 0.0001" kadar inçtirler. Metrik olarak ayarlandığında, programlanmış üniteler 0.001mm'ye kadar milimetredirler. Tüm ofset değerleri bu ayar inçten metriğe değiştirildiğinde dönüştürülürler, veya tam tersi. Buna rağmen, bu ayarın değiştirilmesi hafızaya kaydedilmiş bir programı otomatik olarak dönüştürmeyecektir; yani üniteler için programlanmış eksen değerleri değiştirilmelidir.

İnç olarak ayarlandığında, varsayılan G kodu G20'dir, Metrik olarak ayarlandığında, varsayılan G kodu G21'dir.

inç/dak. +/- 15400.0000 .0001 .0001 ila 300.000 inç/dak.	mm/dak. +/- 39300.000 .001 .001 ila 1000.000
.0001 in/el kumandası tıklaması .001 in/el kumandası tıklaması .01 in/el kumandası tıklaması .1 in/el kumandası tıklaması	.001 mm/el kumandası tıklaması .01 mm/el kumandası tıklaması .1 mm/el kumandası tıklaması 1 mm/el kumandası tıklaması

10 - Limit Rapid at 50% (Limit Hızlı %50'de)

Bu ayarın "On (Açık)" olarak ayarlanması, makineyi en hızlı kesmeyen eksen hareketinin (hızlı) %50'sine sınırlayacaktır. Makine eksenleri dakika başına 700 inçe (ipm) konumlandırabiliyorsa, bu ayar Açık olduğunda 350ipm'ye sınırlanacağı anlamına gelir. Bu ayar açık olduğunda, kumanda %50 hızlı atlama mesajı görüntüleyecektir. Off (Kapalı) olarak ayarlandığında, %100 en yüksek hızlı devir mevcuttur.

11 - Baud Hızı Seçimi

Bu ayar, operatörün verinin ilk seri porta/porttan transfer edildiği hızı değiştirmesini sağlar (RS-232). Bu programların yüklenmesi/indirilmesi vb. ve DNC fonksiyonları için geçerlidir. Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır.

12 - Parite Seçimi

Bu ayar birinci seri portu (RS-232) için pariteyi tanımlar. Hiçbiri olarak ayarlandığında, seri veriye hiçbir parite biti eklenmez. Sıfır olarak ayarlandığında, bir 0 biti eklenir. Normal parite fonksiyonları gibi Çift ve Tek çalışma. Sistem ihtiyaçlarının anlaşıldığından emin olun, örneğin, XMODEM 8 veri biti kullanmalı ve hiçbir parite kullanmamalıdır ("Hiçbiri"ne ayarlı). Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır.

13 Stop Bit (Dur Biti)

Bu ayar birinci seri portu (RS-232) için durma sayısını gösterir. 1 veya 2 olabilir. Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır.

14 - Senkronizasyon

Bu, birinci seri port (RS-232) için alıcı ve gönderici arasındaki senkronizasyon protokolünü değiştirir. Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır. RTS/CTS'ye ayarlandığında, seri veri kablosundaki sinyal kabloları alıcı veri alırken göndericiye geçici olarak veri göndermeyi durdurmasını bildirmek için kullanılır. XON/XOFF'a ayarlandığında, en çok kullanılan ayar, ASCII karakter kodları alıcı tarafından göndericiye geçici olarak durmasını bildirmek için kullanılır.

Kağıt bant zımba veya okuyucu başlatma/durdurma kodlarının gönderilmesi dışında, DC Codes (DC Kodları) seçimi XON/XOFF gibidir. XMODEM, 128 baytlık bloklarda veri gönderen bir alıcı-kontrollü haberleşme protokolüdür. XMODEM her bir blok bütünlük açısından kontrol edildiği için daha fazla güvenilirliğe sahiptir. XMO-DEM 8 veri biti kullanmalı ve hiçbir parite kullanmamalıdır.

15 H & T Code Agreement (H ve T Kodu Uyuşması)

Bu ayarın ON (AÇIK)olarak ayarlanması, makinenin H ofset kodunun iş mili içindeki takım ile uyuşup uyuşmadığını kontrol etmesini sağlar. Bu kontrol çarpmaların engellenmesine yardımcı olabilir. Bu ayarın bir H00 ile beraber bir alarm meydana getirmeyeceğine dikkat ediniz. H00 takım uzunluğu ofsetini iptal etmek için kullanılır.

Ayarlar 16-21

Bu ayarlar, makine fonksiyonlarını değiştiren, makineden ve iş parçasında hasara neden olan tecrubesiz opertörleri engellemek için açılabilirler.

16 - Dry Run Lock Out (Kuru Çalıştırma Kilidi)

Kuru Çalıştırma özelliği bu ayar On (Açık) olarak ayarlandığında kullanılabilir olmayacaktır.

17 - Opt Stop Lock Out (Opsiyonel Durdurma Kilidi)

Opsiyonel Durdurma özelliği bu ayar açık olduğunda kullanılabilir olmayacaktır.

18 - Block Delete Lock Out (Blok Silme Kilidi)

Blok Silme özelliği bu ayar Açık olduğunda kullanılabilir olmayacaktır.

19 - Feedrate Override Lock (İlerlemeyi Değiştirme Kilidi)

İlerlemeyi değiştirme düğmeleri bu ayar Açık olarak ayarlandığında devreden çıkarılacaktır.

20 - Spindle Override Lock (İş Mili Atlama Kilidi)

İş mili hızı atlama düğmeleri bu ayar Açık olarak ayarlandığında devreden çıkarılacaktır.

21 - Rapid Override Lock (Hızlı Atlama Kilidi)

Eksen hızlı atlama düğmeleri bu ayar Açık olarak ayarlandığında devreden çıkarılır.

22 - Can Cycle Delta Z (Korunmalı Çevrim Delta Z)

Bu ayar, bir G73 korunmalı çevrimi sırasında talaşları temizlemek için Z-ekseninin geri çekildiği mesafeyi tanımlar. Aralık 0.0 ila 29.9999 inçtir (0-760 mm).

23 - 9xxx Progs Edit Lock (Program Düzenleme Kilidi)

Bu ayarın açılması 9000 serisi programlarının görüntülenmesini, düzenlenmesini veya silinmesini durduracaktır. 9000 serisi programları bu ayar açıkken yüklenemez veya indirilemez. 9000 serisi programları genellikle makro programlarıdır.

24 - Leader To Punch (Delinecek Kılavuz)

Bu ayar, ilk RS-232 portuna bağlı olan bir kağıt bant zımbalama aygıtına gönderilen kılavuzu (bir programın başlangıcındaki boş bant) kontrol etmek için kullanılır.

25 - EOB Pattern (Satır Sonu Paterni)

Bu ayar, seri port 1'e/den (RS-232) veri gönderildiğinde ve alındığında EOB (Satır Sonu) paternini kontrol eder. Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır.

26 - Serial Number (Seri Numarası)

Bu makinenin seri numarasıdır. Bu değiştirilemez.

27 - G76/G77 Kaydırma Yönü

Bu ayar, takımın bir G76 veya G77 korunmalı çevrimi sırasında delik delme takımını temizlemek için kaydırıldığı (taşındığı) yönü kontrol eder. Seçimler şunlardır: X+, X-, Y+ veya Y-. Bu ayarın nasıl çalıştığı hakkında daha fazla bilgi için G kodu bölümündeki G76 ve G77 çevrimine bakın.

28 - Can Cycle Act w/o X/Z (Korunmalı Çevrim Davranışı w/o X/Z)

Bu ayarın "On (Açık)" olarak ayarlanması komutlanmış korunmalı çevrimin bir X veya Z komutu olmaksızın tamamlanmasına neden olacaktır. Tercih edilen işletim metodu bu ayarın Açık olarak ayarlanmasıdır.

Bu ayar Kapalı olduğunda, bir korunmalı çevrim X veya Z ekseni hareketi olmadan programlanmış ise kumanda duracaktır.

29 - G91 Kipli değil

Bu ayarın Açık olarak ayarlanması, G91 komutunu sadece içinde bulunduğu program bloğu içinde kullanacaktır (kipli değil). KAPALI olduğunda, ve bir G91 komutu verildiğinde, makine tüm eksen konumları için artan hareketler kullanacaktır.

30 - 4üncü Eksen Etkin

Bu ayar belirli bir 4üncü eksen için kontrolü başlatır. Bu ayar KAPALI olduğunda, dördüncü eksen devreden çıkarılır; o eksene hiçbir komut gönderilemez. 5inci eksen için Ayar 78'e bakın. İki tane seçimin olduğuna dikkat edin: Tek bir döner tablayı ayarlamak için kullanılabilecek "USER1 (Kullanıcı1)" ve "USER2(Kullanıcı2)".

31 - Reset Program Pointer (Program Göstergesini Sıfırlama)

Bu ayar Kapalı olduğunda, Reset (Sıfırlama) düğmesi program göstergesinin konumunu değiştirmeyecektir. Açık olduğunda, Reset (Sıfırlama) düğmesi program göstergesini programın başlangıcına hareket ettirecektir.

32 - Coolant Override (Renk Atlama)

Bu ayar soğutma sıvısı pompasının çalışmasını kontrol eder. "Normal" seçimi operatörün manüel olarak veya M-kodları ile pompayı açmasını ve kapamasını sağlar. "Off (Kapalı)" seçimi, manüel olarak veya bir programdan soğutma sıvısını açmak için bir deneme yapıldığında alarm verir. "Ignore (Yoksay)" seçimi programlanmış tüm soğutma sıvısı komutlarını yoksayar ancak pompa manüel olarak açılabilir.

33 - Coordinate System (Koordinat Sistemi)

Bu ayar, bir G52 veya G92 programlandığında Haas kumandasının iş parçası ofseti sistemini algılama şeklini değiştirir. FANUC, HAAS, veya YASNAC'a ayarlanabilir.

YASNAC olarak ayarlandığında

G52, G55 gibi başka bir iş parçası ofsetine dönüşür.

G52 ile FANUC'a ayarlandığında

G52'deki herhangi bir değer tüm iş parçası ofsetlerine eklenecektir (küresel koordinat değişimi). Bu G52 değeri hem manüel olarak hem de bir program ile girilebilir. FANUC seçildiğinde, RESET (Sıfırlama) butonuna basılması, bir M30 komutu verilmesi, veya makinenin kapatılması G52'deki değeri silecektir.

G52 ile HAAS'a ayarlandığında

G52'deki herhangi bir değer tüm iş parçası ofsetlerine eklenecektir. Bu G52 değeri hem manüel olarak hem

de bir program ile girilebilir. G52 koordinat değiştirme değeri sıfıra, sıfırı elle girerek, veya G52 X0, Y0, ve/ veya Z0 ile programlayarak ayarlanır.

G92 ile YASNAC'a ayarlandığında:

YASNAC seçildiğinde ve bir G92 X0 Y0 programlandığında, kumanda mevcut makine konumunu yeni bir sıfır noktası olarak (İş Sıfır Ofseti) girecektir, ve o konum G52 listesinin içine girilecek ve bu listede görüntülenecektir.

G92 ile FANUC veya HAAS'a ayarlandığında:

Bir G92 ile FANUC veya HAAS seçimi, yeni İş Sıfırı konum değerinin yeni G92 olarak yüklenmesi dışında YASNAC ayarı gibi çalışacaktır. Yeni iş sıfırı konumunu tanımlamak için belirtilmiş olan iş parçası ofsetine ek olarak G92 listesindeki bu yeni değer kullanılacaktır.

34 - 4üncü Eksen Çapı

Bu, kumandanın açısal ilerleme hızını tanımlamak için kullanacağı A-ekseni çapını ayarlamak için kullanılır (0.0'dan 50 inçe). Bir programdaki ilerleme hızı daima dakika başına inçtir (veya dakika başına mm), bu nedenle, kumanda açısal ilerleme hızını hesaplayabilmek için A-ekseninde işlenen parçanın çapını bilmelidir. 5inci eksen çapı için Ayar 79'a bakın.

35 - G60 Ofseti

Bu 0.0 ila 0.9999 inç aralığında sayısal bir giriştir. Bu, bir eksenin hedef noktasını geçen geri dönüşten önceki yolunun mesafesini belirlemek için kullanılır. Ayrıca G60'e bakın.

36 - Program Restart (Program Yeniden Başlatma)

Bu ayar On (Açık) olduğunda, başlangıçtansa bir programı bir noktadan yeniden başlatmak, okun konumlandığı yerdeki bloktan program başlamadan önce takımların, ofsetlerin, G ve M kodlarının ve eksen konumlarının doğru bir şekilde ayarlandığından emin olmak için kumandanın tüm programı taramasına yönlendirecektir. Aşağıdaki M kodları Ayar 36 devreye alındığında işletilecektir:

M08 Soğutma Sıvısını AçarM42 Yüksek DişliM09 Soğutma Sıvısını KapatırM51-58 Ayar Kullanıcı MM41 Düşük DişliM61-68 Kullanıcı M'i Siler

Kapalı olduğunda, program makinenin durumunu kontrol etmeden başlayacaktır. Bu ayarı Kapalı tutmak ispatlanmış bir programı çalıştırırken zaman kazanmayı sağlar.

37 - RS-232 Data Bits (Veri Bitleri)

Bu ayar seri port 1 (RS-232) için veri bitlerinin sayısını değiştirmek için kullanılır. Bu ayar kişisel bilgisayardaki transfer hızı ile uyuşmalıdır. Normal olarak 7 veri biti kullanılmalıdır ancak bazı bilgisayarlar 8 bit gerektirir. XMODEM 8 veri biti kullanmalıdır ve hiçbir parite kullanmamalıdır.

38 - Aux Axis Number (Yardımcı Eksen Konumu)

Bu 0 ila 1 arasında sayısal bir giriştir. Bu sisteme eklenen harici yardımcı eksenlerin sayısını seçmek için kullanılır. 0'a ayarlandıysa, hiçbir yardımcı eksen yoktur. 1'e ayarlandıysa, bir V-ekseni vardır.

39 - Beep @ M00, M01, M02, M30

Bu ayarı Açık olarak ayarlamak bir M00, M01 (Opsiyonel Durdurma aktif iken), M02 veya M30 bulunduğunda klavyenin bip sesi çıkarmasına neden olacaktır. Bir düğmeye basılana kadar bip sesi devam edecektir.

40 - Takım Ofset Ölçümü

Bu ayar takım ebatının kesici telafisi için nasıl belirtileceğini seçer. Yarıçap veya Çap'a ayarlayın.

41 - Add Spaces RS-232 Out (Boşluk Ekleme RS-232)

Bu ayar Açık olarak ayarlandığında, RS-232 seri port 1 vasıtasıyla bir program gönderildiğinde adres kodları arasına boşluklar eklenir. Kişisel bir bilgisayarda (PC) bir programın okunmasını/düzenlenmesini daha kolay hale getirebilir. Off (Kapalı) olarak ayarlandığında, seri porta gönderilen programların boşluğu olmaz ve daha zor okunur.

42 - M00 After Tool Change (Takım Değiştirme Sonrasında)

Bu ayarın Açık olarak ayarlanması bir takım değiştirme sonrasında programı durduracaktır ve bunu bildiren bir mesaj görüntülenecektir. Programa devam etmek için Cycle Start (Çevrim Başlatma) tuşuna basılmalıdır.

43 - Cutter Comp Type (Kesici Telafi Tipi)

Bu bir telafi edilmiş kesmenin ilk strokunun nasıl başladığını ve parçadan takımın temizlenmesi şeklini kontrol eder. Seçimler A veya B olabilir; kesici telafi bölümüne bakın.

44 - Min F in Radius TNC % (Yarıçap Cinsinden Min F TNC %)

(Yarıçap cinsinden asgari ilerleme hızı (minimum feedrate) takım ucu telafi yüzdesi) Bu ayar, kesici telafi takımı dairesel bir kesimin içine doğru hareket ettirdiğinde ilerleme hızını etkiler. Bu tip bir kesme sabit bir yüzey ilerleme hızı sağlamak için yavaşlayacaktır. Bu ayar, programlanmış ilerleme hızının yüzdesi olarak (1-100 aralığı) en düşük ilerleme hızını tanımlar.

- 45 Mirror Image X-axis (İkiz Görüntü X-ekseni)
- 46 Mirror Image Y-axis (İkiz Görüntü Y-ekseni)
- 47 Mirror Image Z-axis (İkiz Görüntü Z-ekseni)
- 48 Mirror Image A-axis (İkiz Görüntü A-ekseni)

Bu ayarların bir veya daha fazlası On (Açık) olarak ayarlandığında, eksen hareketi çalışma sıfır noktası etrafında görüntülenecektir (ters çevrilmiş). Ayrıca bkz. G101, Ayna Görüntüsü Etkin

49 - Skip Same Tool Change (Aynı Takım Değiştirmeyi Atla)

Bazı programlarda, bir programın veya bir alt yordamın bir sonraki bölümünde aynı takım çağırılabilir. Kumanda iki değişiklik yapacak ve iş milindeki aynı takımla bitirecektir. Bu ayarın AÇIK olarak ayarlanması aynı takım, takım değiştirmesini atlayacaktır; bir takım değişikliği ancak iş mili içine farklı bir takım yerleştirildiğinde oluşacaktır.

50 - Aux Axis Sync (Yardımcı Eksen Senkr.)

Bu, ikinci seri port için alıcı ve gönderici arasındaki senkronizasyonu değiştirir. Yardımcı eksenler için ikinci seri port kullanılır. CNC kumandası ile yardımcı eksenler arasındaki ayarlar aynı olmalıdır.

"RTS/CTS"yi seçmek alıcı veriyi aldığında göndericiye geçici olarak veri göndermeyi durdurmasını bildirecektir.

"XON/XOFF"un seçilmesi, göndericiye geçici olarak durmasını bildirmek için alıcıdan ASCII karakter kodlarını kullanılır. XON/XOFF en çok kullanılan ayardır.

Başlatma/durdurma kodlarının gönderilmesi dışında, "DC Codes (DC Kodları)" seçimi XON/XOFF gibidir.

"XMODEM" seçimi, 128 baytlık bloklarda veri gönderen alıcı-kontrollüdür. XMODEM her bir blok bütünlük açısından kontrol edildiği için ek olarak RS-232 haberleşmesi verir.

52 - G83 Retract Above R (R Üzerinden Geri Çekilme)

Aralık 0.0 ila 30.00 inçtir veya 0-761mm). Bu ayar G83'ün (kademeli delik delme çevrimi) davranış şeklini değiştirir. Birçok programlayıcı, talaşların deliğin dışına atılmasını sağlayacak talaş temizleme hareketini sağlamak için referans (R) düzlemini kesimin üzerine iyice ayarlar. Buna rağmen makine bu boş mesafeye delik açmaya çalışacağı için zaman kaybettirir. Eğer Ayat 52 talaşları temizlemek için gerekli olan mesafeye ayarlandıysa, R düzlemi delinen parçaya daha yakın konabilir.

53 - Jog w/o Zero Return (Sıfıra Dönüş)

Bu ayarın Açık olarak ayarlanması, makineyi sıfıra döndürmeden (makinenin park konumunu bulma) eksenlerin elle kumandasını sağlar. Eksen mekanik tahditlerin içine girebileceği ve makineye hasar vereceği için tehlikeli bir durumdur. Kumandaya güç verildiğinde, bu ayar otomatik olarak Off (Kapalı) konumuna döner.

54 - Aux Axis Baud Rate (Yardımcı Eksen Baud Hızı)

Bu ayar, operatörün ikinci seri port (Yardımcı eksen) için veri hızını değiştirmesini sağlar. Bu ayar yardımcı eksen kontrolündeki değerle uyuşmalıdır.

55 - Enable DNC from MDI (MDI'dan Etkin DNC)

Bu ayarın "On (Açık)" olarak ayarlanması DNC özelliğini kullanılabilir yapar. Kumandadan MDI/DNC düğmesine iki kere basılarak DNC seçilir.

DNC Direct Numeric Control (Direkt Nümerik Kontrol) özelliği "Off (Kapalı)" olarak ayarlandığında mevcut değildir.

56 - M30 Restore Default G (Varsayılan G'yi Yeniden Kaydetmek)

Bu ayar On (Açık) olarak ayarlandığında, bir programı M30 ile bitirmek veya Reset (Sıfırlama) düğmesine basmak tüm kipli G kodlarını varsayılanlarına döndürecektir.

57 - Exact Stop Canned X-Z (Kesin Duruş Korunmalı X-Z)

Bu ayar Kapalı olduğunda, eksenler Z-ekseni hareket etmeye başlamadan önce programlanan X, Y konumuna gidemeyebilir. Bu fikstürler, hassas parça detayları veya iş parçası uçları ile ilgili sorunlara neden olabilir.

Bu ayarın Açık olarak değiştirilmesi frezenin Z-ekseni hareket etmeden önce programlanan X, Y konumuna gitmesini sağlar.

58 - Cutter Compensation (Kesici Telafi)

Bu ayar kullanılan kesici telafisinin tipini seçer (FANUC veya YASNAC). Kesici telafisi bölümüne bakın.

59 - Prob Ofseti X+

60 - Prob Ofseti X-

61 - Prob Ofseti Z+

62 - Prob Ofseti Z-

Bu ayarlar konum değiştirme ve iş mili probunun ebatını tanımlamak için kullanılır. Bunlar gerçek algılanan yüzeye konumlandırılan probun tetiklendiği yerden yol mesafesini ve yönünü belirtmek için kullanılır. Bu ayarlar G31, G36, G136, ve M75 kodları tarafından kullanılır. Her bir ayar için girilen değerler hem pozitif hem de negatif numaralar olabilir. Makrolar bu ayarlara ulaşmak için kullanılabilir, daha fazla bilgi için Makro bölümüne bakın.

63 - Tool Probe Width (Takım Probu Genişliği)

Bu ayar takım çapını test etmek için kullanılan probun genişliğini belirtmek için kullanılır. Bu ayar sadece probalama opsiyonu için geçerlidir; G35 tarafından kullanılır.

64 - T. Ofs Meas Uses Work (Takım Ofseti Ölçümü Çalışmayı Kullanır)

Bu ayar Tool Ofset Mesur (Takım Ofseti Ölçümü) butonunun çalışma şeklini değiştirir. Bu ayar Açık iken, girilen takım ofseti, ölçülen takım ofseti artı iş koordinatı ofseti (Z-ekseni) olacaktır. Kapalı iken takım ofseti Z makine konumuna eşittir.

65 - Graph Scale (Graf. Ölçeği) (Yükseklik)

Bu ayar, Grafik modu ekranı üzerinde gösterilen çalışma alanının yüksekliğini belirtir. Bu ayarın varsayılan değeri tüm makine çalışma alanı olan azami uzunluktur. Aşağıdaki formülün kullanımı belirli bir ölçeği ayarlayabilir:

Toplam Y hareketi = Parametre 20 / Parametre 19 Ölçek = Toplam Y yolu / Ayar 65

66 - Graphics X Offset (Grafikler X Ofseti)

Bu ayar X sıfır konumuna ilişkili olan ölçekleme penceresinin sağ tarafını konumlandırır (Grafik bölümüne bakın). Varsayılan değer 0'dır.

67 - Grafikler Y Ofseti

Bu ayar Y sıfır konumuna ilişkili olan zum penceresinin üst tarafını konumlandırır (Grafik bölümüne bakın). Varsayılan değer 0'dır.

68 - Graphics Z Offset (Grafikler Z Ofseti)

İleride kullanım için ayrılmış.

69 - DPRNT Leading Spaces (Baştaki Boşluklar)

Bu Açma/Kapama ayarıdır. Kapalı olarak ayarlandığında, kumanda bir makro DPRNT formatı ifadesi tarafından gerçekleştirilen baştaki boşlukları kullanmayacaktır. Aksine Açık olarak ayarlandığında, kumanda baştaki boşlukları kullanacaktır Aşağıdaki örnek bu ayar KAPALI veya AÇIK olduğunda kumanda davranışını gösterir.

#1 = .0 ;	ÇIKIŞ	
G0 G90 X#1 ;	KAPALI	AÇIK
DPRNT[X#1[44]] ;	X3.0000	X3.0000
Valkikan "V" ila 2 araava	laki haaluğa dikkat adin	Du over Aalkike

Ayar Açık iken "X" ile 3 arasındaki boşluğa dikkat edin. Bu ayar Açık iken bilginin okunması daha kolay olabilir.

70 - DPRNT Open/CLOS DCode

Bu ayar makrolardaki POPEN ve PCLOS ifadelerinin seri porta DC kontrol kodları gönderip göndermediğini kontrol eder. Bu ayar Açık iken, bu ifadeler DC kontrol kodu gönderecektir. Kapalı iken, kontrol kodları engellenir. Varsayılan değer Açık'tır (On).

71 Varsayılan G51 Ölçekleme

P adresi kullanılmadığında bir G51 (G-Kodu Bölümü, G51'e bakın) komutu için ölçeklemeyi belirtir. Varsayılan 1.000'dir (Aralık 0.001 ila 8380.000).

72 Varsayılan G68 Döndürme

R adresi kullanılmadığında bir G68 komutu için derece cinsinden dönmeyi belirtir. 0.0000 ila 360.0000° aralığında olmalıdır.

73 G68 Artan Açı

Bu ayar, her bir komut edilen G68 için G68 dönme açısının değiştirilmesini sağlar. Bu anahtar AÇIK olduğunda ve bir G68 komutu Artan modda (G91) çalıştırıldığında, R adresinde belirtilen değer önceki dönme açısına eklenir. Örneğin 10 olarak belirlenen bir R değeri, ilk defa komut edildiğinde dönmenin 10° olmasına, sonrakinde 20° olmasına vb. neden olacaktır.

74 - 9xxx Progs Trace

Bu ayar, Ayar 75 ile birlikte, CNC programlarını ayıklamak için faydalıdır. Ayar 74 Açık olduğunda, kumanda makro programlardaki (O9xxxx) kodu görüntüleyecektir. Ayar Kapalı olduğunda, kumanda 9000 seri kodunu görüntülemeyecektir.

75 - 9xxxx Progs Singls BLK

Ayar 75 Açık olduğunda ve kumanda Single Block (Tek Satır) modunda çalışırken, kumanda bir makro programdaki her bir kod bloğunda (O9xxxx) duracaktır ve operatörün Çevrim Başlatma tuşuna basmasını bekleyecektir. Ayar 75 Kapalı olduğunda, makro programı sürekli olarak çalışır, kumanda Tek Satır açık olsa bile her bir blokta durmayacaktır. Varsayılan ayar Açık'tır (On).

Hem Ayar 74 hem de Ayar 75 Açık olduğunda, kumanda normal bir şekilde davranır. Çalıştırılan tüm bloklar seçilidir ve görüntülenir, ve Tek Satır modunda iken her bir bloğun çalıştırılmasından önce bir duraksama vardır.

Hem Ayar 74 hem de Ayar 75 Kapalı olduğunda, kumanda 9000 serisi programlarını program kodunu görüntülemeden çalıştıracaktır. Kumanda Tek Satır modunda ise, 9000 serisi programının çalışması sırasında hiçbir tek-satır duraksaması oluşmayacaktır.

Ayar 75 Açık ve Ayar 74 Kapalı olduğunda, 9000 serisi programları çalıştırıldığında görüntülenecektir.

76 - Tool Release Lock Out (Takım Ayırma Kilidi)

Bu ayar AÇIK olduğunda, klavye üzerindeki takım salıverme anahtarı devreden çıkarılır.

77 - Scale Integer F (Ölçek Tam Sayısı F)

Bu ayar, operatöre kumandanın ondalık bir kesim içermeyen bir F değerini (ilerleme hızı) yorumlama şeklini seçme olanağı sağlar. (Pogramlayıcıların daima bir ondalık kesim kullanması önerilir.) Bu ayar, operatörlerin Haas dışındaki bir kumanda üzerinde geliştirilen programları çalıştırmalarına yardımcı olur. Örneğin F12 şöyle olur:

Ayar 77 kapalı olarak 0.0012ünite/dakika Ayar 77 açık olarak 12.0 ünite/dakika

5 ilerleme hızı ayarı bulunmaktadır:

İNÇ		MILIMETRE		
VARSAY	ILAN (.0001)	VARS	AYILAN (.001)	
TAMSAY	l F1 = F1	TAMSAYI	F1 = F1	
.1	F1 = F.0001	.1	F1 = F.001	
.01	F10 = F.001	.01	F10 = F.01	
.001	F100 = F.01	.001	F100 = F.1	
.0001	F1000 = F.1	.0001	F1000 = F1	

78 - 5inci eksen Etkin

Bu ayar KAPALI olduğunda, beşinci eksen devreden çıkarılır ve o eksene hiçbir komut gönderilemez. 4üncü eksen için ayar 30'a bakın. Tek bir döner tablayı ayarlamak için kullanılabilecek olan iki seçenek "USER1 (Kullanıcı1)" ve "USER2(Kullanıcı2)" olduğunu unutmayın.

79 - 5inci Eksen Çapı

Bu, kumandanın açısal ilerme hızını tanımlamak için kullanacağı B-ekseni çapını ayarlamak için kullanılır (0.0'dan 50 inçe). Bir programdaki ilerme hızı daima dakika başına inçtir (veya dakika başına mm), bu nedenle, kumanda açısal ilerme hızını hesaplayabilmek için B-ekseninde işlenen parçanın çapını bilmelidir. 4üncü eksen çapı için ayar 34'e bakın.

80 - Mirror Image B-axis (İkiz Görüntü B-ekseni)

Bu Açma/Kapama ayarıdır. OFF (KAPALI) iken, eksen hareketleri normal bir şekilde oluşur. ON (AÇIK) olduğunda, B eksen hareketi iş parçası sıfır noktası etrafında aynalanabilir (veya ters çevrilebilir). Ayrıca 45-48 ayarlarına ve G101'e bakın.

81 - Güç Vermede Takım

Power Up/Restart (Güç Besleme/Yeniden Başlatma) tuşu basılı olduğunda, kumanda bu ayarda belirtilen takıma değişecektir. (0) belirtilmişse, güç beslemede hiçbir takım değişikliği oluşmaz. Varsayılan ayar 1'dir.

Ayar 81, bir Yol verme/Yeniden Başlatma sırasında aşağıdakilerden birinin oluşmasına neden olacaktır:

A. Ayar 81 sıfıra ayarlanmışsa, karusel cep #1'e döndürülecektir. Hiçbir takım değişikliği gerçekleştirilmez.

B. Ayar 81 takım #1'i içeriyorsa ve iş mili içinde mevcut olan takım takım #1 ise ve eğer ZERO RET - ALL basılı ise, karusel aynı cepte kalacaktır ve hiçbir takım değişikliği gerçekleştirilmeyecektir.

C. Ayar 81 iş mili içinde mevcut olmayan takımın takım numarasını içeriyorsa, karusel cep #1'e ve daha sonra Ayar 81 tarafından belirtilen takımı içeren cebe döndürülecektir. İş mili içinde belirtilen takımı değiştirmek için bir takım değişikliği gerçekleştirilecektir.

82 - Dil

Haas kumandasında İngilizce dışındaki diller mevcuttur. Diğer bir dile geçmek için, bir dil seçin ve Enter (Giriş) tuşuna basın.

83 - M30 Resets Override (M30 Atlamayı Sıfırlar)

Bu ayar Açık olduğunda, bir M30 herhangi bir atlamayı varsayılan değerlerine (%100) yeniden kaydedecektir (ilerleme hızı, iş mili, hızlı).

84 - Tool Overload Action (Takım Aşırı Yük Hareketi)

Bu ayar belirtilen eylemin (Ålarm, Besleme Bekletme, Bip, Otomatik Besleme) bir takım aşırı yüklenmiş duruma geldiğinde oluşmasına neden olur (Takımlar bölümüne bakın).

"Alarm"ın seçilmesi takım aşırı yüklü olduğunda takımın durmasına neden olacaktır.

"Besleme Bekletme"ye ayarlandığında, "Takım Aşırı Yük" görüntülenecektir ve bu durum oluştuğunda besleme bekletme durumunda makine duracaktır. Herhangi bir tuşa basılması mesajı silecektir.

"Bip"in seçilmesi takım aşırı yüklü olduğunda kumandadan bir sesli uyarı sesine (bip) neden olacaktır.

"Otomatik Besleme"ye ayarlandığında, torna otomatik olarak takım yüküne bağlı olan ilerleme hızını sınırlar.

Otomatik Besleme Notları: Delik delmede (rijit veya yüzer), besleme ve iş mili atlama kilitlenecek ve bunun sonucunda Autofeed (Otomatik Besleme) özelliği devre dışı kalacaktır (ekranda atlama tuşu mesajlarını görüntüleyerek kumanda atlama butonlarına yanıt veriyormuş gibi görünür). Diş frezeleme veya vida açma başlıklarının otomatik ters çevrilmesi sırasında Otomatik Besleme özelliği kullanılmamalıdır, çünkü bu belirsiz sonuçlara ve hatta çarpışmaya neden olabilir.

Son komut verilen ilerleme hızı program bittikten sonra veya operatörün Reset (Sıfırlama) tuşuna basıldığında veya Autofeed (Otomatik Besleme) özelliği kapatıldığında yeniden kaydedilecektir. Operatör Autofeed özelliği seçildiğinde tuş takımı ilerleme hızı atlama tuşunu kullanabilir. Bu tuşlar, takım yükü limiti aşılmadığı sürece Autofeed özelliği tarafından yeni komutlanmış ilerleme hızı olarak tanınır. Ancak, takım yük limiti önceden aşılmış olduğunda, kumanda ilerleme hızı atlama tuşlarını göz ardı edecektir.

85 - Maximum Corner Rounding (Azami Köşe Yuvarlatma)

Bu ayar seçili bir tolerans içinde yuvarlatılmış köşelerin talaşlı işlem hassasiyetini tanımlar. Başlangıç varsayılan değeri 0.05'tir. Bu ayar sıfır (0) ise, kumanda her bir hareket bloğunda bir kesin duruş komutlanmış gibi davranır

86 - M39 Kilitleme

Bu Açma/Kapama ayarıdır. AÇIK (ON) iken, M39 komutları reddedilir.

87 - M06 Resets Override (M06 Atlamayı Sıfırlar)

Bu Açma/Kapama ayarıdır. Bu ayar AÇIK olduğunda ve M06 tuşuna basıldığında, tüm atlamalar iptal edilir ve programlanan değerlerine veya varsayılanlarına ayarlanır.

88 - Reset Resets Overrides (Atlama Sıfırlamasını Sıfırlama)

Bu Açma/Kapama ayarıdır. Açık olduğunda ve Reset tuşuna basıldığında, tüm atlamalar iptal edilir ve programlanan değerlerine veya varsayılanlarına ayarlanır.

90 - Görüntülenecek Azami Takımlar

Bu ayar, Takım Geometrisi ekranında görüntülenecek olan takım sayısını sınırlar. Bu ayarın aralığı 1 ila 200'dür.

91 - Gelişmiş Elle Kumanda

Bu ayarın AÇIK olarak ayarlanması, İndeks Elle Kumandası ve Elle Kumanda Harket Sınırı özelliklerini etkin kılar. Bu ayar, Takımhane serisi makinelerde kullanılır. Daha fazla bilgi için Takımhane Frezesi ekine bakın.

100 - Screen Saver Delay (Ekran Koruyucu Gecikmesi)

Bu ayar sıfır olduğunda, ekran koruyucu devreden çıkarılır. Birkaç dakikaya ayarlandığında, bu süreden sonra klavye eylemi olmazsa, IPS ekranı görüntülenecektir. İkinci ekran koruyucu ertelemesinden sonra, her 2 saniyede konum değiştiren Haas logosu görüntülenecektir (herhangi bir tuşa basıldığında, elle kumandada veya alarında devre dışı olur). Kumanda Uyku, Elle kumanda, Düzenleme veya Grafikler modunda ise ekran koruyucu aktive edilmeyecektir.

101 - Feed Overide -> Rapid (Besleme Atlama -> Hızlı)

Bu ayarın Açık olarak ayarlanması ve Handle Control Feedrate (Elle Kumanda İlerleme Hızı) butonuna basılması, el kumandasının hem ilerleme hızını hem de hızlı oran atlamalarını etkilemesine neden olacaktır. Ayar 10 azami hızlı oranını etkiler.

103 - CYC START/FH Same Key (Aynı Tuş)

Bu ayar Açık iken, Cycle Start (Çevrim Başlat) düğmesine basılmalıdır ve bir programı çalıştırmak için basılı tutulmalıdır. Cycle Start bırakıldığında, bir besleme bekletme gerçekleştirilir.

Bu ayar, Ayar 104 açıkken açılamaz. Bunlardan biri Açık olarak ayarlandığında, diğeri otomatik olarak olarak kapanacaktır.

104 - Jog Handle to SNGL BLK (Tek Satıra El Kumandası)

Bu ayar Açık olarak ayarlandığında, el kumandası bir program boyunca tek adım için kullanılabilir. El kumandasının yönünün tersine alınması bir feed hold (besleme bekletme) durumu üretecektir.

Bu ayar, Ayar 103 açıkken açılamaz. Bunlardan biri Açık olarak ayarlandığında, diğeri otomatik olarak olarak kapanacaktır.

108 - Hızlı Döner G28

Bu ayarın AÇIK olarak ayarlanması, döner üniteyi en kısa mesafeyi kullanarak sıfır noktasına geri döndürecektir.

Örneğin eğer döner ünite 10°'de ise ve bir sıfıra dönüş komut edildiyse, eğer bu ayar KAPALI ise döner tabla 350° dönecektir. Bu ayar AÇIK ise tabla -10° dönecektir.

Ayar 108'i kullanmak için, parametre biti CIRC. WRAP. (10) A ekseni için parametre 43 üzerinde ve B ekseni için Parametre 151 üzerinde 1'e ayarlanmalıdır. Parametre biti(leri) 1'e ayarlanmamışsa kumanda ayar 108'i reddecektir.

109 - Warm-Up Time in MIN. (Dakika cinsinden Isınma Süresi)

Ayar 110-112'de belirtilen telafilerin uygulanması sırasındaki dakikaların sayısıdır (güç verilmesinden sonraki 300 dakikaya kadar).

Genel Bakış – Makineye güç verildiğinde, Ayar 109 ve en azından ayar 110, 111 veya 112'den biri sıfır olmayan bir değere ayarlandıysa, aşağıdaki uyarı görüntülenecektir:

DİKKAT! Warm up Compensation is specified! (Isınma Telafisi belirtildi!)

Isınma Telafisini aktive etmek

istiyor musunuz (Y (E)/N (H))?

'Y (Evet)' girildiyse, kumanda hemen toplam telafiyi (ayar 110, 111, 112) uygular, ve telafi süre geçtikçe azalmaya başlar. Örneğin, Ayar 109'daki sürenin %50'si geçtiğinde, telafi mesafesi %50 olacaktır.

Zaman periyodunu "restart (yeniden başlatmak)" etmek için, makinenin gücünü kapatmak ve açmak gereklidir ve başlangıçta telafi sorusuna "evet" cevabı verilmelidir.

DİKKAT! Telafi işlemdeyken 110, 111 veya 112 ayarlarının değiştirilmesi 0.0044 inçe kadar ani bir harekete neden olabilir.

Kalan ısınma süresinin miktarı standart hh:mm:ss (ss:dd:ss) formatı kullanılarak Diyagnostik Girişleri 2 ekranının alt sağ köşesinde görüntülenir.

110 - Warmup X Distance (Isınma X Mesafesi)

111 - Warmup Y Distance (Isınma Y Mesafesi)

112 - Warmup Z Distance (Isınma Z Mesafesi)

Ayar 110, 111 ve 112 eksenlere uygulanan telafinin miktarını (maks = ± 0.0020 " veya ± 0.051 mm) belirtir. Ayar 109 bir etkiye sahip olmak için ayar 110-112 için girilmiş bir değere sahip olmalıdır.

114 - Conveyor Cycle (Konveyör Çevrimi) (dakika)

115 - Conveyor On-time (Konveyör Açık Süre) (dakika)

Bu iki ayar opsiyonel talaş konveyörünü kontrol eder. Ayar 114 (Konveyör Çevrim Süresi) konveyörün otomatik olarak çalıştırılacağı aralıktır. Ayar 115 (Konveyör Açık Süresi) konveyörün çalışacağı zaman miktarıdır. Örneğin, Ayar 114 30'a ve Ayar 115 2'ye ayarlandıysa, talaş konveyörü kendini her yarım saatte bir (30 dakika) çalıştırır, iki dakika çalışır ve daha sonra kendisini kapatır.

Çalışma süresi çevrim süresinin %80'inden daha uzun olmayacak şekilde ayarlanmalıdır. Aşağıdakilere dikkat edin:

CHIP FWD butonu (veya M31) konveyörü ileri yönde çalıştıracak ve çevrimi etkinleştirecektir.

CHIP STOP butonu (veya M33) konveyörü durduracak ve çevrimi iptal edecektir.

116 - Pivot Uzunluğu

Ayar 116 makinenin ilk kurulumunda ayarlanır ve asla değiştirilmez. Bu ayarı yalnızca eğitimli bir teknisyen değiştirmelidir.

117 - G143 Küresel Ofset

Bu ayar, 5-eksenli Haas frezelerine sahip olan ve programları ve takımları birinden diğerine transfer etmek isteyen müşteriler için sağlanmıştır. Pivot uzunluğu farkı (her bir makine için Ayar 116 arasındaki fark) bu ayara girilebilir ve bu G143 takım boyu telafisine uygulanacaktır.

118 - M99 Bumps M30 CNTRS

Bu ayar Açık olduğunda, bir M99 M30 sayaçlarına bir ekleyecektir (bunlar CURNT COMNDS ekranında görülebilir). Bir M99'un bir alt programda değil bir ana programda gerçekleşmesi nedeniyle sayaçları sadece arttıracağını unutmayın.

119 - Offset Lock (Ofset Kilidi)

Bu ayarın Açık olarak ayarlanması Ofset ekranındaki değerlerin değiştirilmesine izin vermeyecektir. Buna rağmen, ofsetleri değiştiren programlar halihazırda bunu yapmaya yetkin olacaktır.

120 - Macro Var Lock (Makro Değişken Kilidi)

Bu ayarın Açık olarak ayarlanması makro değişkenlerinin değiştirilmesine izin vermeyecektir. Buna rağmen, makro değişkenleri değiştiren programlar halihazırda bunu yapmaya yetkin olacaktır.

- 121 APC Pal. Bir Yükleme X
- 122 APC Pal. Bir Yükleme Y
- 123 APC Pal. Bir Boşaltma X
- 124 APC Pal. Bir Boşaltma Y
- 125 APC Pal. İki Yükleme X
- 126 APC Pal. İki Yükleme Y
- 127 APC Pal. İki Boşaltma X
- 128 APC Pal. İki Boşaltma Y

129 - APC Pal. 1 ve 2 Güvenli X Poz

121-129 Ayarları X ve Y eksenleri için palet konumlarıdır. APC yüklendiği zaman ayarlanırlar ve değiştirmeye gerek duymazlar.

130 - Kılavuz Geri Çekilme Hızı

Bu ayar kılavuz delme çevrimi sırasında geri çekilme hızını etkiler (Freze Rijit Kılavuz Çekme seçeneğine sahip olmalıdır). 2 gibi bir sayının girilmesi, frezenin içeri girdiğinden iki kat daha hızlı geri çekilmesini komut edecektir. Değer 3 ise, geri çekilme üç kat daha hızlı olacaktır. 0 veya 1 değerinin geri çekilme hızı üzerinde bir etkisi olmayacaktır. (Aralık 0-4)

2 değerinin girilmesi, G84 için 2 J kodu kullanılmasına denktir (Kılavuz çekme korunmalı çevrimi). Bununla birlikte, rijit delme için J kodunun tanımlanması ayar 130'un atlanmasına neden olacaktır.

131 - Otomatik Kapı

Bu ayar, Auto-Door (Otomatik Kapı) özelliğini destekler. Otomatik kapılı makineler için Açık olarak ayarlanmalıdır. Ayrıca bkz. M80/81 (Otomatik Kapı Açma/Kapama M-kodları).

Cycle Start (Çevrim Başlat) butonuna basıldığında kapanacak ve program M00, M01 (Opsiyonel Durma açıkken) veya M30 ulaştığında ve iş mili dönmeyi durdurduğunda açılacaktır.

133 - REPT Rigid Tap (Rijit Kılavuz Delme)

Bu ayar, vida açma sırasında aynı delikte bir ikinci vida açma geçişi programlandığında dişlerin sıralanacağı şekilde iş milinin yönlendirildiğini denetler.

142 - Offset Chng Tolerance (Ofset Değiştirme Toleransı)

Bu ayar, bir ofset bu ayar için girilmiş değerden daha fazla miktarda değiştirilmişse bir uyarı mesajı gerçekleştirir. Aşağıdaki ileti görüntülenecektir: "XX ofseti Ayar 142'den daha fazla değiştirir! Kabul et (Y/N)?", bir ofseti girilen miktardan daha fazla değiştirme girişimi yapıldıysa (hem pozitif hem de negatif), "Y (Evet)" girildiyse, kumanda ofseti her zaman olduğu gibi güncelleştirir, aksi takdirde, değiştiklik reddedilir.

"Y (Evet)" girildiyse, kumanda ofseti her zaman olduğu gibi güncelleştirir, aksi takdirde, değişiklik reddedilir.

143 Machine Data Collect (Makine Veri Toplama)

Bu ayar, kullanıcının kumandadan RS-232 portu aracılığıyla gönderilen bir veya daha fazla Q komutu kullanarak veri almasını ve bir E komutu kullanarak Makro değişkenleri ayarlamayı mümkün kılar. Bu özellik yazılım tabanlıdır ve kumandadan gelen verileri talep etmek, yorumlamak ve kaydetmek için ek bir bilgisayar gerektirir. Bir donanım opsiyonu da makine durumunu ölçmeye izin verir. Detaylı bilgi için CNC Veri Transfer bölümüne bakın.

144 - Feed Overide->Spindles (Besleme Atlama->İş Milleri)

Bu ayar bir atlama uygulandığında talaş yükünü sabit tutmak için tasarlanmıştır. Bu ayar Açık iken, herhangi bir ilerleme hızı atlama ayrıca iş mili devrine uygulanacaktır, ve iş mili atlamaları devreden çıkarılacaktır.

146 - APC Palet 3 Yükleme X

- 147 APC Palet 3 Yükleme Y
- 148 APC Palet 3 Boşaltma X
- 149 APC Palet 3 Boşaltma Y
- 150 APC Palet 4 Yükleme X
- 151 APC Palet 4 Yükleme Y
- 152 APC Palet 4 Boşaltma X
- 153 APC Palet 4 Boşaltma Y
- 154 APC Palet 3 ve 4 Güvenli X

Ayarlar 121-129'a bakın

155 - Load Pocket Tables (Cep Tablolarını Yükleme)

Bu ayar sadece bir yazılım yükseltme gerçekleştirildiğinde ve/veya bellek silindiğinde ve/veya kumanda yeniden başlatıldığında kullanılmalıdır. Yana monteli takım değiştirici cep takım tablosunun dosyadan verilerle değiştirilmesi için, ayar AÇIK olmalıdır.

Bir USB sürücüden veya RS-232'den bir Ofset dosyası yüklerken ayar KAPALI ise, Cep Takım tablasının içeriği değiştirilmeyecektir. Ayar 155, makine açıldığında otomatik olarak KAPALI olarak varsayılana ayarlar.

156 - Save Offset with PROG (Program ile Ofset Kaydetme)

Bu ayarın Açık olarak ayarlanması kumandanın ofsetleri programlar gibi ancak O999999 başlığı altında aynı dosyaya kaydetmesini sağlar. Ofsetler dosyada son % işaretinden önce görünecektir.

157 - Offset Format Type (Ofset Formatı Tipi)

Bu ayar ofsetlerin programlar ile kaydedildiği formatı denetler.

A'ya ayarlandığında, format kumandada görüntülenen formata benzer, ve ondalık kesim ile sütun başlıkları içerir. Bu formatta kaydedilen ofsetler bir PC üzerinde daha kolay düzenlenebilir ve daha sonra tekrar yüklenebilir.

B'ye ayarlandığında, her bir ofset bir N değeri ve bir V değeri ile ayrı bir satıra kaydedilir.

158,159,160 - XYZ Screw Thermal COMP% (Vida Isıl Telafisi)

Bu ayarlar -30'dan +30'a ayarlanabilir ve bu nedenle mevcut vida ısıl telafisini 30% ila +30%'a ayarlayacaktır.

162 - Default To Float (Yüzmeyi Sağlamak İçin Varsayılan)

Bu ayar On (Açık) olduğunda, kumanda ondalık kesim olmadan girilen değerlere bir ondalık kesim ekleyecektir (belirli adres kodları için). Ayar Off (Kapalı) olduğunda, ondalık noktalar içermeyen adres kodlarını izleyen değerler makinist yazımı olarak kabul edilecektir (örn., binde veya on binde.) Bu ayar bir G76 bloğunda A değerini (takım açısı) hariç tutacaktır. Bu nedenle, özellik aşağıdaki adres kodları için geçerlidir: X, Y, Z, A, B, C, E, F, I, J, K, U, W

A (G76 ile hariç) Program çalıştırılırken bir ondalık nokta içeren G76 A değeri bulunduğunda, 605 Geçersiz Takım Ucu Açısı alarmı verilir.

D (G73 ile hariç)

R (YASNAC modunda G71 ile hariç)

	Girilen değer	Ayar Kapalı Olarał	Ayar Açık Olarak
İnç modunda	X-2	X0002	X-2.
MM modunda	X-2	X002	X-2.
	مرجعا بالمعام المكامر مع	م ما مربع ما مرمات ا م	0.000

Bu ayarın hem manüel olarak hem diskten hem de RS-232 vasıtasıyla girilen tüm programların yorumlanmasını etkilediğini unutmayın. Ayar 77 Scale Integer F'in (Ölçek Tam Sayısı F) etkisini değiştirmez.

163 - Disable .1 Jog Rate (.1 Elle Kumanda Hızını Devreden Çıkarma)

Bu ayar en yüksek elle kumanda hızını devreden çıkarır. En yüksek elle kumanda hızı seçildiyse, bir sonraki daha düşük hız otomatik olarak onun yerine seçilir.

164 - Rotary Increment (Döner Ünite Artışı)

Bu ayar ÉC300 üzerindeki Rotary Index (Döner Indeks) butonu için geçerlidir. Yük konumundaki döner tabla için dönmeyi belirtir. Bu -360 ile 360 derece arası bir değere ayarlanmalıdır. Örneğin, "90" girilmesi her döner endeks butonuna her basıldığında paleti 90° döndürecektir. Sıfıra ayarlandıysa, döner tabla dönmeyecektir.

167-186 Düzenli Bakım

Düzenli bakım ayarlarında, altı yedek öğeye ek olarak denetlenebilen 14 öğe vardır. Bu ayarlar kullanıcının, kullanım sırasında başlatıldığında her bir öğenin varsayılan saat sayısını değiştirmesini sağlayacaktır. Saat sayısı sıfır olarak ayarlanmışsa, öğe, mevcut komutların bakım sayfasındaki öğeler listesinde görünmeyecektir.

167 Soğutma Sıvısı Değişimi varsayılan açık saati

169 Yağ Filtresi Değişimi varsayılan açık saatleri

170 Dişli Kutusu Yağı Değişimi varsayılan açık saatleri

171 Soğutma Tankı Seviye Kontrolü varsayılan açık saati

172 Yol Yağı Seviyesi Kontrolü varsayılan hareket-süresi saatleri

173 Dişli Kutusu Yağı Seviye Kontrolü varsayılan açık saatleri

174 Keçeler/Silecekler Denetimi varsayılan hareket-süresi saatleri

175 Hava Beslemesi Filtresi Kontrolü varsayılan açık saatleri

176 Hidrolik Yağı Seviye Kontrolü varsayılan açık saatleri

177 Hidrolik Filtresi Değişmi varsayılan hareket-süresi saatleri

178 Gresörlük varsayılan hareket-süresi saatleri

179 Gres Ayna varsayılan hareket-süresi saatleri

180 Gres Takım Değiştirici Kamları takım değişimlerindeki varsayılan

181 Yedek Bakım Ayarı #1 varsayılan açık saatleri

182 Yedek Bakım Ayarı #2 varsayılan açık saatleri

183 Yedek Bakım Ayarı #3 varsayılan hareket-süresi saatleri

184 Yedek Bakım Ayarı #4 varsayılan hareket-süresi saatleri

185 Yedek Bakım Ayarı #5 takım değişimlerindeki varsayılan

186 Yedek Bakım Ayarı #6 takım değişimlerindeki varsayılan

187 - Machine Data Echo (Makine Verisi Eko)

Bu ayar ON (Açık) veya OFF (Kapalı) olarak ayarlanabilir. ON olarak ayarlandığında, kullanıcının PC'sinden verilen veri toplama Q komutları PC ekranında görüntülenecektir. OFF olarak ayarlandığında, bu komutlar görüntülenmeyecektir.

188/189/190 - G51 X/Y/Z SCALE

Eksenler aşağıdaki yeni ayarlar kullanılarak tek tek ölçeklenebilir (pozitif bir sayı olmalıdır).

Ayar 188 = G51 X SCALE Ayar 189 = G51 Y SCALE Ayar 190 = G51 Z SCALE

Ancak, ayar 71'in bir değere sahip olması halinde 188-190 arasındaki ayarlar göz ardı edilir ve ayar 71'deki değer ölçekleme için kullanılır. Ayar 71 için olan değer sıfır olması durumunda 188-190 arasındaki ayarlar kullanılır. 188-190 arasındaki ayarlar etkin olduğu zaman yalnızca doğrusal interpolasyon, G01, yapılabildiğine dikkat edin. G02 veya G03'ün kullanılması halinde alarm 467 meydana gelecektir.

191 - Default Smoothness (Varsayılan Düzgünlük)

Bu ayar ROUGH (Kaba), MEDIUM (Orta), veya FINISH (Son) olarak ayarlanabilir ve düzgünlüğü ve maksimum köşe yuvarlatma faktörünü ayarlamak için parametre 302, 303, 314, 749, ve 750-754 ve G187'yi kullanır. Varsayılan değerler, bir G187 komutu tarafından iptal edilmediğinde kullanılır.

196 - Konveyör Kapatması

Bu, talaş konveyörü kapanmasından önce işlem olmadan beklenecek süre miktarını belirtir (eğer varsa yıkama soğutma sıvısı). Birim dakikadır.

197 - Soğutma Sıvısı Kapatması

Bu, frezelerdeki Taşırma, Duş ve Takım İçerisinden Su Verme kapanmasından önce işlem olmadan beklenecek süre miktarını belirtir. Birim dakikadır.

198 - Arkaplan Rengi

Aktif olmayan ekran bölmelerinin arkaplan renklerini belirler. Aralık 0 ile 254 arasındadır.

199 - Arka Işık Zamanlayıcısı

Kumandaya hiçbir giriş olmadığında makinenin arka ışığının kapatılmasından sonraki süreyi dakika cinsinden belirtir (ELLE KUMANDA, GRAFİKLER veya UYKU modu veya bir alarmın mevcut olması hariç). Ekranı geri getirmek için herhangi bir tuşa basın (İPTAL önerilir).

201 - Yalnızca kullanımdaki İş ve Takım Ofsetlerini Göster

Bu ayarı açmak yalnızca çalışan program tarafından kullanılan İş ve Takım Ofsetlerini görüntüleyecektir. Bu özelliğin aktive edilmesi için önce programın grafik modunda çalıştırılması gerekir.

216 - Servo ve Hidrolik Kapatma

Bu ayar, eğer donatılmışsa, bir programın çalıştırılması, elle kumanda, düğmeye basmak vb. gibi işlemler yapılmadan belirtilen dakika sayısı dolduktan sonra servo motorları ve hidrolik pompayı kapatacaktır. Varsayılan 0'dır.

238 - Yüksek Yoğunluklu Aydınlatma Zamanlayıcısı (dakika)

Yüksek Yoğunluklu Aydınlatma seçeneğinin (HIL) açık kalacağı zamanı dakika cinsinden belirler. Kapı açılmışsa ve iş lambası düğmesi açıksa açılabilir. Bu değerler sıfır ise, o zaman lamba açık kalacaktır.

239 - Çalışma Lambası Kapatma Zamanlayıcısı (dakika)

Çalışma lambası düğmesi değiştirildiğinde dahili çalışma lambasının açık kalacağı süreyi dakika cinsinden belirler. Bu değer sıfır ise, o zaman lamba otomatik olarak kapatılacaktır.

900 - CNC Ağı Adı

Ağda görünmesini istediğiniz kontrol adıdır.

901 - Adresi Otomatik Olarak Elde Et

Bir ağ üzerindeki DHCP sunucusundan bir TCP/IP adresi ve alt ağ maskesi alır (bir DHCP sunucusu gerektirir). DHCP açık olduğunda, TCP/IP, ALT AĞ MASKESİ ve AĞ GEÇİDİ girişleri artık gerekli değildir ve "***" girilmiş olacaktır. Ayrıca DHCP'den IP adresi almak için sondaki ADMIN bölümünü not edin. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

NOT: DHCP'den IP ayarlarını almak için: Kontrolde, List Prog'a gidin. Sabit Sürücüye aşağı okla gidin. Sabit Sürücü dizini için sağ ok tuşuna basın. ADMIN yazın ve Ekle'ye (Insert) basın. ADMIN Klasörünü seçin ve Yaz'a (Write) basın. Diske IPConfig.txt dosyasını kopyalayın ve bunu bir Windows bilgisayarında okuyun.

902 - IP Adresi

Statik TCP/IP adresleri ile bir ağ üzerinde kullanılır (DHCP kapalı). Ağ yöneticisi bir adres atayacaktır (örnek 192.168.1.1). Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

NOT: Alt Ağ Maskesi, Ağ Geçidi ve DNS için adres formatı XXX.XXX.XXX.XXX'dir (örnek 255.255.255.255), adresi bir nokta ile bitirmeyin. Maks adres 255.255.255.255'tir; negatif sayı olamaz.
903 - Alt Ağ Maskesi

Statik TCP/IP adresleri ile bir ağ üzerinde kullanılır. Ağ yöneticisi bir maske değeri atayacaktır. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

904 - Ağ Geçidi

Yönlendiriciler aracılığıyla erişim elde etmek için kullanılır. Ağ yöneticisi bir adres atayacaktır. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

905 - DNS Sunucusu

Ağ üzerindeki Alan Adı Sunucusu veya Alan Adı Ana Makine Kontrol Protokolü IP adresi. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

906 - Alan Adı/Çalışma Grubu Adı

Ağa CNC kontrolünün hangi çalışma grubuna veya alan adına ait olduğunu söyler. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir.

907 - Uzak Sunucu Adı

WINCE FV 12.001 veya daha yükseğine sahip olan Haas makineleri için, paylaşım klasörünün bulunduğu bilgisayardan NETBIOS adını girin. IP adresi desteklenmez.

908 - Uzak Paylaşım Yolu

Paylaşılan ağ klasörü adı. Ana makine adı seçildikten sonra, yolu yeniden adlandırmak için, yenisini girin ve YAZ (WRITE) düğmesine basın.

NOT: YOL (PATH) alanında boşluklar kullanmayın.

909 - Kullanıcı Adı

Bu, sunucuya veya alan adına bağlanmak için kullanılan addır (bir kullanıcı alan adı hesabı kullanarak). Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir. **Kullanıcı Adları büyük/küçük harf duyarlıdır ve boşluk içeremez.**

910 - Parola

Bu, sunucuya bağlanmak için kullanılan paroladır. Bu ayarda yapılan değişikliklerin geçerli olması için makinenin kapatılması ve sonra yeniden açılması gereklidir. **Parolalar büyük/küçük harf duyarlıdır ve boşluk içeremez.**

911 - CNC Paylaşımına Erişim (Kapalı, Oku, Tam)

CNC sabit sürücü okuma/yazma ayrıcalıkları için kullanılır. KAPALI olduğunda sabit sürücünün ağa bağlanmasını durdurur. OKU, sabit sürücüye salt okunur erişim sağlar. TAM sürücüye ağdan okuma/yazma erişimi sağlar. Bu iki ayarın birden kapatılması Ayar 913'ün ağ kart iletişimini devredışı bırakmasını sağlar.

912 - Disket Sekmesi Etkinleştirildi

Bu, USB disket sürücüsünün kapatılması/açılmasına erişimi açar. KAPALI olarak ayarlandığında, USB disket sürücüsüne erişilemez.

913 - Sabit Disk Sürücü Sekmesi Etkinleştirildi

Sabit sürücünün kapatılmasına/açılmasına erişimi açar. KAPALI olarak ayarlandığında, sabit sürücüye erişilemez. Bu iki ayarın birden kapatılması CNC Paylaşımının (Ayar 911) ağ kart iletişimini devredışı bırakmasını sağlar.

914 - USB Sekmesi Etkinleştirildi

USB portunun kapatılmasına/açılmasına erişimi açar. KAPALI olarak ayarlandığında, USB portuna erişilemez.

915 - Ağ Paylaşımı

Sunucu sürücüsünün kapatılmasına/açılmasına erişimi açar. KAPALI olarak ayarlandığında CNC kumandasından sunucuya erişim mümkün değildir.

916 - İkinci USB Sekmesi Etkinleştirildi

İkincil USB portunun kapatılmasına/açılmasına erişimi açar. KAPALI olarak ayarlandığında, USB portuna erişilemez.

BAKIN

Genel Gereksinimler

Çalışma Sıcaklığı Aralığı: 41°F ila 104°F (5 ila 40°C) Depolama Sıcaklık Aralığı: -20 ila 70°C (-4°F ila 158°F) Ortam Nemi: %20 – %95 bağıl nem, yoğunlaşmasız Rakım: 0-7000 ft.

Elektrik Şartları

Tüm Makineler için Aşağıdakiler Gereklidir:

AC enerjisi, trifaze Delta veya Yıldız Bağlantı olmalı ve mutlaka topraklanmalıdır (yani delta için merkezi bir topraklama yolu veya tek bir topraklama yolu, yıldız bağlantı için nötr topraklama)

47-66 Hz frekans aralığı

Hat gerilimi ± %10'dan daha fazla dalgalanmamalıdır

Harmonik bozulma toplam RMS geriliminin %10'unu aşmamalıdır

20-15 HP Sistemi (Standart VF ve 10K, EC300, EC400)

	195-260V Gerilim	54-488V Yüksek Gerilim
Güç Kaynağı 1	50 AMP	25 AMP
Haas Devre Kesici	40 AMP	20 AMP
Elektrik panelinden gelen servis 100'den az ise şunu kullanın:	70 mm² (8 GA) KABLO	70 mm² (12 GA) KABLO
Elektrik panelinden gelen servis 100'den fazla ise şunu kullanın:	70 mm² (6 GA) KABLO	70 mm² (10 GA) KABLO

40-30 HP Sistemi (50 Konik, 40 Konik HT 10K, VF Süper Hız, EC-300, EC-400 12K, VM)

	195-260V Gerilim	354-488V Yüksek Gerilim2
Güç Kaynağı1	100 AMP	50 AMP
Haas Devre Kesici	80 AMP	40 AMP
Elektrik panelinden gelen servis 100'den az ise şunu kullanın:	70 mm² (4 GA) KABLO	70 mm² (8 GA) KABLO
Elektrik panelinden gelen servis 100'den fazla ise sunu kullanın:	70 mm² (2 GA) KABLO	70 mm² (6 GA) KABLO

40-30 HP Sistemi (VS 1/3, HS 3-7 R modelleri dahil)

	195-260V Gerilim
Güç Kaynağı	125 AMP
Haas Devre Kesici	100 AMP
Elektrik panelinden gelen servis 100'den az ise şunu kullanın:	70 mm² (2 GA) KABLO
Elektrik panelinden gelen servis 100'den fazla ise şunu kullanın:	70 mm² (0 GA) KABLO

UYARI! Makinaya verilen elektrik ile aynı iletkenlikte ayrı bir topraklama kablosunun, makinanın şasisine bağlanması gereklidir. Bu topraklama kablosu, kullanıcının emniyeti ve doğru kullanım için gereklidir. Bu topraklama kablosu, servis girişindeki ana tesis toprağından çekilmelidir ve makinaya verilen elektrik ile aynı kablo borusu içerisinde yer almalıdır. Bu uygulama için, bir soğuk su borusu veya makinaya bitişik bir topraklama çubuğu kullanılamaz. Makineye verilen elektrik topraklanmalıdır. Yıldız bağlantı için, nötr topraklanmalıdır. Delta enerji için, merkezi bir topraklama yolu veya tek bir topraklama yolu kullanılmalıdır. Topraksız elektrik kullanılırsa, makine doğru çalışmayacaktır. (Harici 480V Seçeneğinde bu söz konusu değildir)

Gelen gerilimdeki dengesizliğin kabul edilebilir bir limiti aşması durumunda, makinenin nominal beygirgücüne ulaşılamayabilir. Makine, doğru çalışmakla beraber, ilan edilen çıkış gücünü sağlayamayabilir. Bu durum, daha ziyade, faz dönüştürücü kullanırken dikkatinizi çekecektir. Faz dönüştürücü, sadece diğer hiçbir yöntem kullanılamıyorsa kullanılmalıdır.

Bağlantıdan bağlantıya veya bağlantıdan toprağa azami gerilim 260 voltu veya Dahili Yüksek Gerilim Seçeneği bulunan yüksek gerilimli makinelerde, 504 voltu aşmamalıdır.

1 Bu tabloda gösterilen akım şartları, makinenin içindeki devre kesicisi büyüklüğüne göre verilmektedir. Bu kesicinin kesme süresi son derece yavaştır . Doğru çalışmanın sağlanması için, harici servis kesicisini, "güç kaynağı"ndan da anlaşıldığı üzere, %20-25 oranında yükseltmek mümkün olabilir.

2 Verilen yüksek gerilim şartları, Dahili 400V yapısını yansıtmaktadır; bu da, Avrupa'da standarttır. Yerli kullanıcılar ve diğer tüm kullanıcılar, Harici 480V seçeneğini kullanmalıdır.

Hava Şartları

Freze, makinanın arka kısmındaki basınç regülatörüne girişte, asgari 100 PSI gerektirmektedir. Ayrıca 4 scfm (EC ve HS frezeleri için 9scfm) hacim de gereklidir. Bu, basınç 100 PSI'ye düştüğü zaman açılan asgari 20 galonluk bir depo ihtiva eden iki beygirgücü bir kompresör vasıtası ile temin edilmelidir.

Not: Operatör pnömatik işlemler esnasında hava nozulu kullanıcaksa, asgari hava şartlarına (aşağıdaki) 2 scfm eklenmelidir.

Makine Tipi	Ana Hava Regülatörü	Hava Hattı Giriş Hortum Boyu
EC-300	85 psi	1/2" I.D. (İç Çap)
EC-400	85 psi	1/2" I.D. (İç Çap)
EC-1600	85 psi	1/2" I.D. (İç Çap)
HS 3/4/6/7 R modelleri dahil	85 psi	1/2" I.D. (İç Çap)
VF-1 - VF-11 (40Konik), VM	85 psi	3/8" I.D. (İç Çap)
VF-5 - VF-11 (50 Konik)	85 psi	1/2" I.D. (İç Çap)
VR Serisi	85 psi	1/2" I.D. (İç Çap)
VS 1/3	85 psi	1/2" I.D. (İç Çap)

Hava hortumunun takılması için tavsiye edilen yöntem, hortumun, bir hortum kenedi ile, makinanın arka kısmındaki uca takılmasıdır. Eğer seri bir kaplin kullanılmak isteniyorsa, 1/2"lik bir kaplin kullanın.

NOT: Hava girişinde aşırı yağ ve su olması makinenin arıza yapmasına neden olur. Hava filtresi/regülatöründeki otomatik boşaltma gözü, makine çalıştırılmadan önce boşaltılmalıdır. Cihazın doğru çalışmasının temin edilmesi için, bu aylık olarak kontrol edilmelidir. Ayrıca, hava girişinde aşırı miktarda pislik birikirse, boşaltma sübapı tıkanarak, makineye yağ ve/veya su girmesine neden olabilir.

NOT: Yardımcı hava bağlantıları, hava filtresi/regülatörün ayarsız tarafı üzerinde yapılmalıdır.

UYARI! Makine çalışırken ve basınç göstergesi (makine regülatörü üzerindeki), takım değişiklikleri veya palet değişiklikleri esnasında 10 psi'den daha büyük bir düşüş gösterirse, makineye yetersiz hava gidiyor anlamına gelir.

Bakım Çizelgesi

Aşağıda, işleme merkezleri için gerekli olan bakımların bir listesi verilmektedir. Makinenin iyi bir şekilde çalışmaya devam etmesi ve garantinin geçerliliğini koruması için bu spesifikasyonlara uyulmalıdır.

Sıklık Gerçekleştirilecek Bakım

Günlük

- Soğutma sıvısı seviyesini her sekiz saatte bir kontrol edin (özellikle yoğun TSC kullanımı söz konusuysa).
- Geçiş yağı depo seviyesini kontrol edin.
- Kızak koruyucuları ve alt tavadaki talaşları temizleyin.
- Takım değiştiricideki talaşları temizleyin.
- İş mili koniğini temiz bir kumaş parçası ile temizleyin ve hafif miktarda yağ uygulayın.

Haftalık

- Takım İçerisinden Su Verme (TSC) filtrelerini kontrol edin. Gerekirse, temizleyin veya değiştirin.
- Filtre regülatörü üzerindeki otomatik süzgecin doğru çalışıp çalışmadığını kontrol edin.

• TSC seçeneği bulunan makinelerde, soğutma tankı üzerindeki talaş sepetini temizleyin. Depo kapağını çıkarın ve depo içinde biriken tortuları temizleyin. Soğutucu tankı üzerinde çalışmadan önce, soğutma sıvısı pompasını kumanda ünitesinden çıkarın ve makineyi **kapatın**. **TSC seçeneği bulunmayan makinelerde bunu aylık olarak gerçekleştirin.**

- Hava kalibresinin / regülatörünün 85 psi olduğunu kontrol edin. Dikey frezeler için iş mili hava basıncı regülatörünün 15 psi olduğunu kontrol edin. Yatay frezeler için 25 psi.
- TSC seçeneği bulunan makinelerde, takımların V flanşları üzerine bir miktar gres uygulayın.

TSC seçeneği bulunmayan makinelerde bunu aylık olarak gerçekleştirin.

- Dış yüzeyleri yumuşak bir temizlik ürünü ile temizleyin. Çözücü KULLANMAYIN.
- Makinenin teknik özelliklerine göre, hidrolik karşı dengeleme basıncını kontrol edin.

Aylık

• Dişli kutusundaki yağ seviyesini kontrol edin. **40 konik iş milleri için:** İş mili kafasının arkasındaki kontrol kapağını çıkarın. Toplama tankının alt kısmındaki taşma tübünden yağ damlamaya başlayana kadar, üst kısımdan yavaş yavaş yağ ekleyin. **50 konik iş milleri için:** Gösterge camındaki yağ seviyesini kontrol edin. Gerekli ise, dişli kutusunun yan kısmından yağ ekleyin.

• Kızak koruyucularının doğru çalıştığını kontrol edin ve gerekiyorsa, hafif bir yağ ile yağlayın.

• Takım değiştiricinin yönlendirme raylarının dış kenarlarına bir miktar yağ uygulayıp, tüm takımların üzerinden geçirin.

- Cam bölmeden SMTC yağ seviyesini kontrol edin, (bu kısımdaki Yana Monteli Takım Değiştirme Yağ Seviyesi bölümüne bakın).
- **EC-400** A-ekseni üzerindeki konumlama pedlerini ve yükleme istasyonunu temizleyin. Bunu yapmak için paleti sökmeniz gerekir.

• Elektrik paneli vektör sürücü havalandırma deliklerinde (güç anahtarının altında) toz birikmesi olup olmadığını kontrol edin. Birikme varsa paneli açın ve havalandırma deliklerini temiz bir kumaş parçasıyla temizleyin. Toz birikimini ortadan kaldırmak için gerektiği kadar basınçlı hava uygulayın.

Altı Aylık

- Soğutma sıvısını değiştirin ve soğutucu tankını iyice temizleyin.
- Tüm hortumları ve yağ borularını çatlamaya karşı kontrol edin.

• A-ekseni dönüşünü kontrol edin. Gerekliyse yağ ekleyin (Mobil SHC-630). Doğru yağ seviyesi gösterge camının yarısıdır.

Yıllık

• Dişli kutusu yağını değiştirin. Yağı dişli kutusunun alt kısmından akıtın. İş mili kafasının arkasındaki kontrol kapağını çıkarın. Toplama tankının alt kısmındaki taşma tübünden yağ damlamaya başlayana kadar, üst kısımdan yavaş yavaş yağ ekleyin. **50 konik millerde**, şanzımanın yan tarafından yağ ekleyin.

• Yağ Hava Panelinin Yağ Deposunun içindeki yağ filtresini temizleyin ve filtrenin alt kısmındaki tortuları temizleyin.

• VR Machines (VR Makineleri) A ve B Eksenlerinin dişli yağını değiştirin (Mobil SHC 634).

2 yıl

- EC-400 Döner A-ekseni yağını değiştirin.
- VR Machines (VR Makineleri) A ekseninin karşı dengelemesini değiştirin.

Düzenli Bakım

Düzenli bakım sayfası Current Commands (Mevcut Komutlar) ekranlarında "Maintenance" (Bakım) başlığı altında bulunur. CURNT COMDS tuşuna basarak ekrana erişin ve sayfaya atlamak için Önceki Sayfa veya Sonraki Sayfa tuşlarını kullanın.

Listede bulunan bir seçeneği, yukarı ve aşağı ok tuşlarına basmak sureti ile seçebilirsiniz. Daha sonra, Origin (Başlangıç) butonuna basmak sureti ile seçeneği aktive edebilir veya devreden çıkarabilirsiniz. Seçeneklerden biri aktif ise, kalan saat sayısı görüntülenecektir, ve yerine bir devreden çıkarma seçeneği görüntülenecektir, "—".

Bakımı yapılacak parçanın süresi, sol ve sağ ok tuşları ile ayarlanabilir. Origin (Başlangıç) tuşuna basıldığında, tuş, tekrar, ön tanımlı süreyi girecektir.

Seçenekler, cihaz açık durumda iken geçen süre (ON-TIME) (AÇIK SÜRE) veya devir başlangıç zamanı (CS-TIME) (DB-ZAMANI) ile takip edilir. Süre sıfıra ulaşınca ekranın alt kısmında, "Maintenance Due (Bakım Zamanı)" mesajı görüntülenir (saatin eksi olması zamanın aşıldığını gösterir).

Bu mesaj bir alarm değildir ve makinanın çalışmasına da herhangi bir şekilde engel olmamaktadır. Gerekli bakım işlemleri yapıldıktan sonra, kullanıcı, "Maintenance (Bakım)" ekranından bu seçeneği seçebilir, devreden çıkarmak için Origin (Başlangıç) tuşuna basabilir, sonra ön tanımlı kalan süre ile tekrar aktive etmek üzere, Origin (Başlangıç) tuşuna tekrar basabilir.

Daha fazla bakım varsayılanları için 167-186 Ayarlarına başvurun. 181-186 ayarlarının bir sayı girilerek yedek bakım uyarıları olarak kullanıldığını unutmayın. Bakım numarası ayara bir değer (zaman) eklendiğinde Current Commands sayfasında görüntülenecektir.

Pencereler / Muhafaza

Kesme sıvıları ve amin ihtiva eden kimyasal maddelere maruz kalmak polikarbonat pencereler ve muhafazaları zayıflatabilir. Her yıl kalan gücün %10 oranına kadar kaybedilmesi mümkündür. Bozulma meydana geldiği düşünülüyorsa, pencereyi değiştirin. Pencerelerin her iki yılda bir değiştirilmesi önerilir.

Hasarlı veya ciddi ölçüde çizilmiş pencereler ve korumalar değiştirilmelidir. Hasarlı pencereleri hemen değiştirin.

İş Lambası

Haas frezeleri için dört tip iş lambası vardır. Freze üzerinde herhangi bir çalışma yapmadan önce, makineyi ana kesiciden kapatın.

İş lambasının enerjisi GFI devresinden gelir. İş lambası açılmıyorsa, ilk önce bunu kontrol edin, kontrol panelinin yan tarafından sıfırlanabilir.

Talaş Burgusu

Çalışma esnasında, talaşların çoğu, makineden, talaş boşaltma borusu vasıtası ile toplanır. Ancak, çok küçük talaş parçaları, akıtma kanalından geçerek, soğutucu tankının süzgecinde birikebilir. Akıtma kanalının tıkanmasını önlemek için, bu süzgeci düzenli olarak temizleyin. Akıtma kanalın tıkanır ve bu nedenle soğutucu, makine tavasında birikirse, makineyi durdurun, akıtma kanalını tıkayan talaşları temizleyin ve soğutucunun akmasını sağlayın. Soğutucu tankı süzgecini boşalttıktan sonra, tekrar çalıştırın.

İş Mili Hava Basıncı

Ana hava regülatörün arkasında yer alan göstergeyi kullanarak İş Mili hava basıncını kontrol edin. VF, VR, ve VS frezeleri 17 psi'ye ayarlanmalıdır. EC-serileri ve HS serileri 25psi'ye ayarlanmalıdır. Gerekiyorsa ayarlayın.

12K ve 15K İş Mili

12K &15K İş Milleri için hava basıncı 20 psi'dir. 12K &15K İş Milleri, yağ miktarını biraz azaltmak ve rulmanlara yağ aktarımını hızlandırmak için daha fazla basınca ihtiyaç duyar.

Yağlama Tablosu

Sistem	Yağ	Miktar
Dikey Frezeler		
Yağlama yağı ve pnömatikler	Mobil Vactra #2	2-2.5 qts
Şanzıman	Mobil DTE 25	40Konik 34 oz
	Mobil SHC625	50 Konik 51 oz
A ve B ekseni (VR-Serileri)	Mobil SHC634	A-ekseni 5qts, B-ekseni 4qts
EC-Serileri		
Yağlama yağı ve pnömatikler	Mobil Vactra #2	2-2.5 qts
Şanzıman	Mobil DTE 25 (40T)	963.88 g
	Mobil SHC 625 (50T)	963.88 g
Döner Tabla	Mobil SHC634	Kapak gösterge camı
HS 3/4/6/7 R modelleri dahil		
Yağlama yağı ve pnömatikler	Mobil DTE 25	2-2.5 qts
Şanzıman	Mobil SHC625	963.88 g
Döner Tabla	Mobil SHC634	Kapak gösterge camı

* Tüm 50-Konikli Makineler, GR-Serisi frezelerindeki 30,000 dev/dak 40-konikli iş milleri ve 15,000 dev/dak iş milleri DTE 25 kullanır.

Asgari Yağlama Sistemi

Asgari Yağlama Sistemi makine parçalarının yağlama miktarını en iyi seviyeye getirmek için iki alt sistemden oluşur. Sistem sadece gerektiğinde yağlama sağlar; bu nedenle hem bir makine için gerekli yağlama yapı miktarını hem de fazla yağın soğutma sıvısının kirletme olasılığını azaltır.

(1) Lineer kızak ve bilyeli vidaları yağlamak için bir gres sistemi

(2) İş mili rulmanlarını yağlamak için hava/yağ sistemi.

Asgari Yağlama sistemi kumanda kabininin yanında bulunmaktadır. Kilitli bir kapı sistemi korur.

Çalıştırma

Gres Sistemi - Lineer kızak ve bilyeli vidalar için asgari yağlama bir gres sistemidir.

Gres sistemi süre yerine eksen hareketinin mesafesine bağlı olarak yağ enjekte eder. Eksenlerden biri parametre 811'de tanımlanan mesafeye hareket ettiğinde gres enjekte edilir. Bu gres tüm eksenler için yağlama noktalarının her birine eşit şekilde dağıtılır.

Dolu bir gres deposu yaklaşık olarak bir yıl dayanır.

Hava/Yağ Sistemi - İş mili için asgari yağlama sistemi bir hava/yağ karışımıdır. Hava/yağ sistemi iş milinin gerçek devir sayısına bağlı olarak yağ enjekte eder. İş miline uygun miktarda yağ sağlamak için zamanlanmış hava/yağ enjeksiyon çevirimi düşük devirli çalışma için de kullanılır.

Tek bir yağ deposu sürekli iş mili çalışmasında en az 1 yıl dayanmalıdır.

Bakım

Gres Deposu İkmali:

Not: Gres seviyesini düzenli şekilde kontrol edin. Depo tamamen boşalırsa, depoyu yeniden doldurmayın ve makineyi çalıştırmayın. Sistemin boşaltılması ve makineyi çalıştırmaya başlamadan önce kullanıma hazırlanması için satıcınıza başvurun.

Gres deposuna ikmal yapmak için şu 0 Mobil Sınıfı greslerden birini kullanın.

Mobilux EP0 XHP-220

Ayrıca Haas parça numarası 93-1293'ü kullanarak bir ikmal torbası sipariş edebilirsiniz.

- 1. Makine havasını ayırın.
- 2. Gres deposunu gevşetmek ve sökmek için birlikte verilen anahtarı kullanın.
- 3. Gresin tümünü kullanmak için gres ikmal torbasının köşesini kesin veya gresin bir kısmı kullanmak ve daha sonra torbayı yeniden kapamak için torbanın üstündeki perforajdan yırtın.

Poşeti perforajdan (yeniden kapanabilir) veya bir köşe kesin

- 4. Gres torbasından depoyu doldurun.
- 5. Depoyu anahtarla geri vidalayın ve sıkın. Aşırı sıkılmayı önlemek için başlığın bir tahdidi vardır.
- 6. Makine havasını bağlayın.

Bir gres sistemi alarmı meydana gelirse, problemi kabul edilebilir bir sürede çözmek için gerekli adımları izleyin. Alarm uzun bir süre reddedilirse, makine hasar görebilir.

Yağ Deposunun Doldurulması:

- 1. Deponun üstünü temizleyin.
- 2. Doldurma kapağını açın ve depo içine seviye maksimum doldurma çizgisine gelene kadar DTE-25 yağı dökün.

Yağ sistemi alarmları: Alarm 805 yağ sistemi alarmıdır. Bir alarm meydana gelirse problemi kabul edilebilir bir sürede çözmek için gerekli adımları izleyin. Alarm uzun bir süre reddedilirse, makine hasar görebilir.

Hava/yağ sistemi: Yağlama sisteminin doğrulanması: İş mili düşük devirde dönerken, solenoidle çalışan hava valfi üzerindeki manüel atlama düğmesine 5 saniye basın, sonra bırakın. Hava karıştırıcı bakır hattı ile hava hortumu arasındaki rakorda yağ çok küçük miktarlarda görülecektir. Yağ izlerinin görülmesi birkaç saniye sürebilir.

Hava/Yağlama Sistemi

Makinanın yağlanması, harici bir yağlama sistemi ile gerçekleştirilir. Mevcut yağlama seviyesi depo içinde görülebilir; Doğru yağ seviyesini sağlamak için gerektiği kadar yağ ekleyin. Uyarı! Yağ eklerken deponun üzerindeki "high" (üst) çizgisini geçmeyin. Depodaki yağ seviyesi, deponun üzerindeki "low" (alt) çizgisinin altına inmemelidir, aksi takdirde, makine hasar görebilir.

Dış Yağlama Sistemi

Yağlama Yağı Filtresi

Yol yağlama yağı filtresi elemanı bir 25-mikron delikli metal filtredir (94-3059). Filtrenin yıllık olarak veya makinenin her 2000 saat çalışmasından sonra değiştirilmesi önerilir. Filtre elemanı, yağ pompası deposu içine yerleştirilmiş olan (dahili filtreler) filtre gövdesine monte edilmiştir.

Filtre elemanını değiştirmek için aşağıdaki adımları takip ediniz:

- 1. Yağ deposunu pompa gövdesinde tutan vidaları sökün, dikkatlice depoyu indirin ve dışarı alın.
- Uç kepin vidalarını sökmek için şerit bir anahtar, boru anahtarı veya ayarlanabilir pense kullanın (şekle bakınız). Dikkat: Uç kep söküldüğünde filtrenin dönmesini engellemek için bir tornavida veya benzeri bir alet kullanın.
- 3. Uç kep söküldüğünde yağ filtresi elemanını filtre gövdesinden çıkarın.
- 4. Filtre mahfazasının içini ve filtre uç kepini gerektiği şekilde temizleyin.
- 5. Yeni yağ filtresi elemanını (p/n 94-3059), O-ringi ve uç kepi takın. Sıkmak için, filtre uç kepinin sökülmesinde kullandığınız aletleri kullanın - Aşırı sıkmayın.
- 6. Yağ deposunu takın; depo ve üst flanş arasındaki contanın iyi oturtulduğundan emin olun.

Soğutma Sivisi Sistemi Bakımı

Talaş Tepsisi Temizliği

Soğutma sıvısı deposuyla en sık etkileşim talaş tepsisi ile olacaktır. Frezelenen malzemeninin tipine bağlı olarak talaş tepsisinin her gün bir kaç defa çıkarılması ve yıkanması gerekebilir.

Seviye sensörünün tam dolu göstermesi, ancak pompanın kavitasyon yapmaya başlaması halinde geçit filtresinin temizlenmesi gerekir. Geçit filtresini depodan dışarı çıkarın ve talaş fıçısı içinde hafifçe vurun veya fazla talaşları uzaklaştırmak için bir hava hortumu kullanın.

Pompa sökme (55 Galonluk Depo Gösterilmiştir)

NOT: TSC pompasının da haftalık olarak temizlenmesi gereken ve pompanın altında bulunan bir filtresi vardır.

Soğutma sıvısı deposu aylık olarak temizlenmelidir (TSC için haftalık). Daha kolay erişim için, ya pompaları tanktan kaldırarak (pompa platformunu kulplardan tutmak ve kaldırmak) ya da hangisi uygunsa, gücü çıkararak ve hortumları ve kabloları ayırarak (kulplu tepside bir anahtar bulundurarak) depo makinenin altından dışarı çekilip çıkarılabilir.

Depoyu Hareket Ettirme (55 Gal. Depo gösterilmiştir)

Depo Elemanı Sökümü (55 Gal. Depo gösterilmiştir)

Depo elemanlarının sökülmesi işlemi kapağın tutulması ve soğutma sıvısı deposundan kaldırılmasından oluşmaktadır. Kapaklar depoya tespit edilmemişlerdir.

Depo standart bir elektrikli süpürge kullanılarak temizlenebilmelidir. Aşırı derecede talaş birikmesi varsa talaşları uzaklaştırmak için bir kürek gerekebilir.

Soğutma Sıvısı ve Soğutma Sıvısı Deposu Değerlendirmeleri

Makine çalıştıkça su buharlaşacaktır ve bu da soğutma sıvısının konsantrasyonunu değiştirir. Soğutma sıvısı ayrıca parçalarla da taşınır.

Uygun soğutma sıvısı karışımı %6 ila %7 arasındadır. Soğutma svısını tamamlamak için sadece daha fazla soğutma sıvısı veya deiyonize su kullanılmalıdır. Konsantrasyonun hala aynı aralıkta olduğundan emin olun. Konsantrasyonu kontrol etmek için bir kırılım ölçer kullanılabilir.

Soğutma sıvısı düzenli aralıklarla değiştirilmelidir. Bir program oluşturulmalı ve takip edilmelidir. Bu makine yağının yenilenmesini engelleyecektir ve uygun konsantrasyonlu ve yağlama oranlı soğutma sıvısı sağlayacaktır.

Bakım için soğutma sıvısı deposunu çıkarmadan önce soğutma sıvısı pompasını (pompalarını) yukarı kaldırın ve bir kenara koyun. Makineden **ayırmayın** ve pompa (pompalar) kurulu ve bağlı iken depoyu makineden uzaklaştırmayı **denemeyin**.

Makine soğutma sıvısı suda eriyebilir, sentetik yağ bazlı veya sentetik bazlı soğutma suyu/yağ olmalıdır. Mineral kesme yağlarının kullanımı makine içindeki kauçuk parçalara zarar verir ve garantiyi geçersiz kılar.

Soğutma sıvısı pas önleyicilere sahip olmalıdır. Soğutma sıvısı olarak saf su kullanmayın; makine parçaları paslanır.

Soğutma sıvısı olarak yanıcı sıvılar kullanmayın.

Asitli ve yüksek alkalınlı sıvılar makinenin içindeki parçalara zarar verecektir.

TSC (Takım İçerisinden Su Verme) Bakım

TSC pompası hassas bir dişli pompasıdır ve soğutma sıvısı içerisindeki aşındırıcı parçalar varsa daha kısa sürede aşınır ve basınç kaybına uğrar.

• Sistem çalışırken ve iş milinde takım yokken TSC filtresini kontrol edin. Filtreyi tıkandığı zaman değiştirin.

• Filtre ünitelerini değiştirdikten veya temizledikten sonra, sistemi kullanıma hazırlamak için TSC sistemini, iş milinde herhangi bir takım takılı olmaksızın en az bir dakika boyunca çalıştırın.

• TSC sistemi kullanımda olduğunda soğutma sıvısı daha hızlı kullanılacaktır. Soğutma sıvısı seviyesinin yukarıda olduğundan ve seviyenin daha sık kontrol edildiğinden emin olun (her sekiz saatte bir kontrol edin). **Pompanın erken aşınması depoda düşük bir soğutma sıvısı seviyesi ile çalışmaya neden olacaktır.**

TSC1000 Bakım

1000psi sistemine herhangi bir bakım uygulamadan önce, güç kaynağını sökün; güç beslemesinden çıkarın.

Yağ seviyesini günlük olarak kontrol edin. Yağ düşük ise, depo üzerindeki doldurma kapağından yağ ekleyin. Depoyu 5-30W sentetik yağ ile yaklaşık %25 oranında doldurun.

Yedek Filtre Elemanı Değişimi

Filtre göstergesi - 5 inç Hg veya daha fazla bir vakum seviyesi gösterdiğinde filtre torbasını değiştirin. Emişin -10 inç Hg üzerinde olmasına izin vermeyin aksi halde pompa hasarı meydana gelebilir. 25-mikronlu filtre torbası ile değiştirin (Haas P/N 93-9130).

Kelepçeleri gevşetin ve kapağı açın. Gözü sökmek için kolu kullanın (filtre elemanı göz ile birlikte sökülecektir). Filtre elemanını gözden sökün ve atın. Gözü temizleyin. Yeni bir filtre elemanı takın ve gözü yerine takın (eleman ile). Kapağı kapatın ve kelepçeleri tespit edin.

VMC SMTC/Şanzıman Yağı SMTC dişli kutusunun yağ seviyesinin kontrolü

Dikey Frezeler

Dikey Frezeler: Gösterilen konumda yağ seviyesi gösterge camını gözden geçirin. Doğru yağ seviyesi gösterge camının yarısıdır. Daha fazla yağa gerek olması halinde kam kutusunun üstündeki bronz susturucuyu çıkarın. Doğru seviyeye (kapasite 6 kuarttır) kadar içerisine yağ dökün, ardından susturucuyu değiştirin.

İş mili dişli kutusunun yağ seviyesinin kontrolü

50 Konik İş Milleri - İş mili dişli kutusu yağ seviyesi çubuğuna erişmek için kolonun sağ tarafından gözlem plakasını çıkarın.

40 Konik İş Milleri - İş mili dişli kutusu yağ seviyesini belirlemenin bir yolu yoktur. Tahliye edin, sonra dişli kutusunu doldurun.

Dikey Freze 40-Konikli Şanzıman Yağ Değişimi

VF 1-6/40T modellerinde, şanzıman yağı seviyesi için görünür bir gösterge yoktur.

Şanzıman yağı eklemek için, iş mili kafasının tam arkasında duran erişim panosunu çıkarın. Bu, Şanzıman Yağı Taşma Borusunu açar. Tabla üzerine, bu çıkışın altına bir kap yerleştirin. Z-eksenini, tüm Z hareketi boyunca manüel olarak elle kumanda edin. Makineyi kapatın. Motor muhafazasının üst kısmından erişerek, şanzıman yağı doldurma gözünü bulun. Doldurmak için motor muhafazası sac kısmının üstünde bir ağız vardır. Yağ taşma borusundan akmaya başlayana kadar Mobil DTE 25 yağı yavaşça dökün; bu taşma deponun dolduğunu gösterir. Şanzıman yağ doldurma gözünü kapatın, taşma borusunu silerek temizleyin ve erişim kapağını takın. Taşan yağı uygun bir şekilde atın.

NOT: VF-5 50 koniklide, gösterge camı yoktur; yağ bir hortum aracılığıyla dişliler üzerine doğrudan dağıtılır.

Yağ Değişimi

- 1. Tabaka metali iş mili kafasından sökün.
- 2. Enkoderi ve enkoder bağlama plakasını çıkarın.

3. Yağ tahliye tapasını çıkarın. Yağ boşalırken, mıknatısta metal parçaçıkları olup olmadığını kontrol edin.

4. Yağ boşaltma tapasını yeniden takın ve dişli kutusunu doldurma gözünün üzerinden 1¼ litre Mobil DTE 25 dişli yağı ile doldurun.

5. Yağ taşırma tapasını yeniden takın, vida dişlerinin üzerine küçük bir miktar vida yapıştırıcı sürün. (Diş sabitleme bileşiği kullanmayın) enkoderi takın ve iş mili yönlendirmesinin doğru olduğundan emin olun.

6. Tabaka metali takın ve iş mili ısıtmasını çalıştırın ve kaçak olup olmadığını kontrol edin.

HMC SMTC/Şanziman Yağı

SMTC dişli kutusunun yağ seviyesinin kontrolü

Tapayı çıkarın ve parmağınızla yağı hissedin. Yağ hissedemezseniz, yağ dışarı çıkmaya başlayana kadar yağ ekleyin (kapasite 8 kuarttır). Tapayı yeniden takın.

<u>Ş MILI DIŞLI KUTUSUNUN YAĞ SEVIYESININ KONTROLÜ</u>

EC-300/400/500 & ES-5 Serisi - Daha küçük yatay makinelerde iş mili dişli kutusu yoktur.

EC-630/1600/2000/3000 - Şanzımana erişmek için tabaka metali sökün. Gösterildiği gibi şanzımanın yan tarafı üzerindeki gösterge camını gözden geçirin. Yağ seviyesi gösterge camının yarısında olmalıdır. Gerektiği kadar doldurun.

EC-1600

HS-3/4/6/7

İş Mili Dişli Kutusu Yağ Değişimi

1. Tabaka metali iş mili kafasından sökün.

2. Gösterildiği gibi tahliye tapasını çıkarın. Mıknatıslı tahliye tapasını metal parçacık açısından kontrol edin.

3. Kir ve metal parçacıklarının dişli kutusuna girmesini önlemek için doldurma deliğinin etrafına bir hava hortumu ile aşağı doğru hava tutun. Filtre tapasını çıkarın.

- 4. Yağ gösterge camının yarısına gelene kadar, Mobil SHC 625 yağı ekleyin.
- 5. İş mili ısıtmasını çalıştırın ve kaçak olup olmadığını kontrol edin.

HS 3/4/6/7 38-Takim Takim Değiştirici Bakımı

Altı Aylık

- Depo Tahrik Dişlisini, Takım Kabını ve Değiştirici Kayma Rafını kırmızı gres kullanarak yağlayın:
- Moly gres kullanarak Kol Milini yağlayın.

Yıllık

Kırmızı gres ile Değiştirici Kızak Lineer Kızağını yağlayın.

Takım Kabı Zincir Gerginliği

Takım kabı zincir gerginliği koruyucu düzenli olarak kontrol edilmelidir. Zincir gerginliği ayarı deponun alt sol alanında gerceklestirilir. Deponun ön tarafındaki dört adet M12x50 SHCS'yi gevsetin. Bu plakanın hareket etmesini sağlayacaktır. Saft üzerindeki altıqen kilit somununu gevsetin ve altıqen cıvatayı kullanarak saftı sıkın. Ayarı altıgen kilit somunu ile kilitleyin ve dört 12x50 SHCS'yi tekrar sıkın. Gerdirme endekslenmiş kab konumunu değiştirmeyecektir ancak manuel takım itme silindiri ile takım kabı arasındaki hizalamayı kontrol edin.

EC-Serileri Palet Değiştirici Döner Tabla

Yağ Değiştirme

EC-300

Depo içindeki yağ seviyesini düzenli olarak kontrol edin ve dolu tutun. Yağı değiştirmeniz gerekmez.

EC-400 Tam Dördüncü Eksen Döner Tablası (2 Yılda bir Gerçekleştirin)

1. Alıcı sonundaki Z-ekseni yol kapağının sağ tarafı üzerindeki ondört (14) BHCS'yi sökün ve kolona doğru kaydırın.

2. Sol Z-ekseni yol kapağını sökün: Z-eksenini kolona doğru tüm yol boyunca elle kumanda edin ve H-çerçevesini 45° saat yönünün tersine döndürün. kızak koruyucuyu alıcıya tespit eden onüç (13) BHCS'yi sökün ve asılı kumanda butonundan kapı boyunca sökün.

3. Döner indesksleyici ucundaki depoyu ayırın ve hortumun ucunu takın.

4. Döner endekleyicinin ters tarafı üzerindeki tahliye tapasını sökün. Yağ boşalınca deliği tekrar tapalayın.

5. Tablanın yan tarafının üzerindeki hava kaçırma deliği tapasını sökün.

6. Yağ hava kaçırma deliğinden sızana kadar döner tablayı doldurun ve tapalayın.

7. Depo hortumunu ve yol kapaklarını değiştirin. Alıcıya onbeş dakikada bir 180°'den 0°'a komutu verin. Yağı değiştirmeye devam edeceği için depo seviyeye düşecektir. Dolu çizgisinin hemen altına kadar gereken yağı doldurun.

EC-400 Döner İndeksleyici

EC-400 Döner İndeksleyici

1. Döner indekleyicinin sol tarafı üzerindeki tahliye tapasını sökün. Yağ boşalınca deliği tekrar tapalayın.

2. Tahliye deliğinin üst tarafınındaki hava çıkışı tapasını sökün.

3. Döner indeksleyiciyi resimde gösterildiği gibi yağ doldurma deliğinden doldurun. Yağ hava deliğinden damladığında deliği tekrar tapalayın.

4. Onbeş dakikada bir 180°'den 0°'a dönme komutu verin. Bu sistemde kalan hava alınmış olur. Yağ seviyesi gösterge camının yarısına geldiğinde döner indeskleyici dolmuş demektir. Gerektiği kadar doldurun.

5. kızak koruyucuyu yerine takın.

HIDROLIK FREN (EC-1600-3000, HS3-7R)

Busterdeki sıvı seviyesini görüntüleyerek fren sıvısı seviyesini kontrol edin. EC 1600-3000'i kontrol etmek için fren busteri kapağını sökün. Kapak/buster makinenin ön sağ tarafında yer alır. HS 3-7R fren busteri makinenin operatör asılı kumanda butonu tarafında yer alır. Kızak koruyucuyu tabladan sökün ve kızak koruyucuyu tabladan uzağa kaydırın.

Yağ Ekleme

Sadece Mobil DTE 25 kullanın. Havalandırma filtresini fren busteri grubundan sökün ve yağ ekleyin. Uygun yağ seviyesi buster üzerindeki minimum ve maksimum işaretleri arasındadır.

Karşı Dengeleme Şarjı

^aarj/de^oarj kitinin CGA 580 rakor ucunu basınç kaynağına bağlayın. Gaz manifoldu T-kolunu saatin ters yönünde sonuna kadar döndürün. Gazlı aynayı Schrader valfına elle sıkarak şarj/deşarj kitini bağlayın, sonra anahtarla hafifçe sıkın. Sistemi aşağıda verilen tank basınç gereksinimleri şemasına göre gerekli basınca getirin.

NOT: VF-6/8 için, her bir hidrolik tank için verilen montaj prosedürünü izleyin.

NOT: GGA 580 sağ dişli rakorunun takılmasına uygun ayarlı kuru nitrojen gazı (kaynak bağlantılı kalite uygun olur) kullanılmalıdır. Basınçlı hava, oksijen veya yanıcı gaz kullanmayın. Aşağıda verilen tabloya bakın ve tezgaha ve iş mili kafası konumuna uygun basıncı teyit edin ve silindirin düz havşa içine oturduğunu doğrulayın.

Makine	Hareketin En Üstündeki Tank Basıncı
VF-3/4	1150 psi
VF-3YT/50	1100 psi
VF-5/40	875 psi
VF-5/50	1100 psi
VF-6/7/10 50T	1150 psi
VF-8/9/11 50T	1550 psi
VR	1025 psi
VS	1250 psi
HS	1250 psi
EC-630/1600/2000/3000	800 psi

Düzenli bakım yapılacak maddelere ek olarak aşağıdaki maddeler gerçekleştirilmelidir.

Sıklık Gerçekleştirilecek Bakım

Aylık

• Takım değiştirici grubu üzerindeki tüm pivot noktalarını gresleyin.

• Yağı kafanın (3) alanından kontrol edin. Doldurma başlığına ve gösterge camına ulaşmak için A-ekseni kapaklarının sökülmesi gerekir. B-ekseni doldurma başlığı dökümün dış tarafının üzerindedir. Dökümün üzerindeki dolum ağzına Mobil SHC-634 ekleyin.

Yıllık

• Yağı kafanın (3) alanından değiştirin:

İş mili kafasının her iki tarafının üzerindeki alanlar için (A-ekseni), tahliye tapasını sökün (4 BHCS) ve yağı tahliye edin. Not: Kafanın sol tarafı üzerinde ön tarafa en yakın olan tapayı ve başın sağ tarafının arkasına doğru olan tapayı sökün. Yukarıdaki "Aylık" bölümünde tanımlandığı gibi iki alanı Mobil SHC-634 ile doldurun.

B-Ekseni İş mili kafasının arka tarafındaki alan için, bir allen anahtar ile 1/4" NPT boru tapasını sökün ve yağı boşaltın. **Not:** Tapa bu arka alanın merkezine yakındır. Yukarıdaki "Aylık" bölümünde tanımlandığı gibi Mobil SHC-634 ile doldurun.

VR-Serileri Hava Filtresi

VR frezeleri motor muhafazası için bir hava filtresi (P/N 59-9088) ile donatılmıştır. Önerilen değiştirme aralığı aylıktır, veya işleme çevre şartlarına bağlı olarak daha yakındır.

Hava filtresi, başlık kapağının arka tarafına yerleştirilmiştir. Hava filtresini sökmek için, basitçe filtreyi üzerinden yukarı çekin; filtre braketinden dışarı yukarı doğru kayacaktır. Filtreyi değiştirmek için, yeni hava filtresini motor muhafazası içine hava filtresine doğru bir şekilde yönlendirilmiş olarak içeri kaydırın. Filtre hava-akış yönü değiştirme filtresi üzerindeki bir etiket tarafından tanımlanır.

VR-11 Hava Filtresi Konumu

VR-Serileri Hava Yayı Karşı Dengeleme Değişimi

Karşı dengeleme hava yayı ve rot uçları her iki (2) yılda bir değiştirilmelidir.

1. Başlamadan önce Eksenin 0 derecede olduğunu doğrulayın. Herhangi bir parçalara ayırma işleminden önce E-stop (Acil Durdurma) butonuna basın.

2. Tabaka metal kapağı sökün ve iki 3/8-16 SHCS'yi (1) gevşetin.

3. 1/4-20 SHCS'yi (2) geri çekin, iki 3/8-16 SHCS'yi (1) sıkın, bir sonraki adım tamamlanırken bu ön yük kam tespitini tutacaktır.

4. Hava Yayını ve Rot Uçlarını (3) bağlayan 3/8-16 SHCS'yi sökün.

5. Rot uçlarını Hava Yayının üzerine sıkın ve 4. adımda sökülen iki 3/8-16 SHCS'yi kullanarak Hava Yayını tespit edin.

6. 3/8-16 SHCS'yi (1) yavaşça gevşetin. Ön yük kam karşı dengelemesini aşağı itmek için 1/4-20 SHCS'yi vidalayın (Bu hava yayını içeri itecektir). Bu ayar cıvatasını, kam içindeki yuvalar bağlantı cıvatalarının üst kısımlarına temas edene kadar sıkın. İki 3/8-16 SHCS'yi (1) sıkmak, ön yük kamını yerinde tutacaktır.

7. Tabak metali tekrar takın, E-stop'u sıfırlayın ve alarmları silin.