Speeds and Feeds

HCSNP2 - Haas Square Negative Positive 2

Material			Cua da		Recommended	Recommended Feed Per
Group	Description	Hardness (HB)	Grade	Inserts	Cutting Speed	Tooth
	Unalloyed Steel	< 180	HK25, HMP20, HMP35	02-0625 02-1121 02-1122	720 - 1150	0.008 - 0.02
P Steel	Low-alloyed Steel	180 - 280	HK25, HMP20, HMP35	02-0625 02-1121 02-1122	720 - 1050	0.008 - 0.02
	High-Alloyed Steel and Tool Steel	280 - 350	HK25, HMP20, HMP35	02-062 02-1121 02-1122	590 - 980	0.008 - 0.02
M Stainless Steel	Stainless Steel	< 270	HMP20, HMP35	02-1121 02-1122	360 - 880	0.004 - 0.012
K Cast Iron	Grey Cast Iron, Ductile Cast Iron, Malleable Cast Iron	180 - 250	HK25, HMP20	02-062 02-1121	490 - 980	0.008 - 0.02

Speeds and Feeds

Feed Rate, Per Revolution (in/min)

$$v_f = f_n \cdot n$$

Feed Rate, Per Tooth (in/min)

$$v_f = f_z \cdot n \cdot Z$$

Feed Per Revolution (in/rev)

$$f_n = \frac{v_f}{n}$$

Feed Per Tooth (in)

$$f_z = \frac{v_f}{n \cdot Z}$$

Cutting Speed (ft/min)

$$v_c = \frac{\pi \cdot D_{tool} \cdot n}{12}$$

Spindle Speed (rev/min)

$$n = \frac{v_c \cdot 12}{\pi \cdot D_{tool}}$$

Material Removal Rate (in³/min)

$$MMR = a_p \cdot a_e \cdot v_f$$

Inch

Symbol	Definition	Unit
V_f	Feed rate	in/min
f_n	Feed per revolution	in/rev
$f_{_{Z}}$	Feed per tooth	in
V_{c}	Cutting speed	ft/min (SFM)
n	Spindle speed	rev/min (RPM)
D_{tool}	Tool cutting diameter	in
MMR	Material removal rate	(in³/min)
a_e	Radial depth of cut	in
a_p	Axial depth of cut	in
Z	Number of teeth/flutes	