

### How To Use This Chart:

1) Select your material in the ISO color chart.

2) Select your Insert Cutting Width in the columns.

3) Start with the <u>middle range</u> of the recommended sfm (vc) and feed (inch/rev) -Adjust the sfm and/or feedrate based on your cutting conditions.

-For Non-ferrous metals, a pecking cycle is recommended for help with breaking the chips

| Parting off |          |                      |   |                          |                      |               |               |
|-------------|----------|----------------------|---|--------------------------|----------------------|---------------|---------------|
| ISO         | VDI 3323 | Material Description |   | Insert Grade             | Cutting Width (inch) |               |               |
|             |          |                      |   | HU30                     | 0.079                | 0.118         | 0.157         |
| Р           | P1-5     | Non-alloy steel      | • | Cutting Speed (vc = sfm) | 260 - 590            | 260 - 590     | 260 - 590     |
|             |          |                      |   | Feed (fn = lpr)          | 0.001 - 0.006        | 0.001 - 0.008 | 0.003 - 0.012 |
| Р           | P6-9     | Low alloy steel      | • | Cutting Speed (vc = sfm) | 230 - 490            | 230 - 490     | 230 - 490     |
|             |          |                      |   | Feed (fn = Ipr)          | 0.001 - 0.006        | 0.001 - 0.008 | 0.003 - 0.012 |
| м           | M12-14   | Stainless steel      | • | Cutting Speed (vc = sfm) | 200 - 460            | 200 - 460     | 200 - 460     |
|             |          |                      |   | Feed (fn = Ipr)          | 0.001 - 0.004        | 0.001 - 0.006 | 0.003 - 0.010 |
| к           | K15-20   | Grey cast iron       | • | Cutting Speed (vc = sfm) | 160 - 330            | 160 - 330     | 160 - 330     |
|             |          |                      |   | Feed (fn = Ipr)          | 0.002 - 0.005        | 0.004 - 0.010 | 0.004 - 0.012 |
| N           | N21-28   | Non-ferrous metals   | 0 | Cutting Speed (vc = sfm) | 660-1480             | 660-1480      | 660-1480      |
|             |          |                      |   | Feed (fn = lpr)          | 0.002 - 0.005        | 0.004 - 0.010 | 0.004 - 0.012 |

| Grooving, Turning |          |                      |   |                          |           |                     |           |
|-------------------|----------|----------------------|---|--------------------------|-----------|---------------------|-----------|
| ISO               | VDI 3323 | Material Description |   | Insert Grade Cu          |           | itting Width (inch) |           |
|                   |          |                      |   | HU30                     | 0.079     | 0.118               | 0.157     |
| Р                 | P1-5     | Non-alloy steel      | • | Cutting Speed (vc = sfm) | 260 - 590 | 260 - 590           | 260 - 590 |
|                   |          |                      |   | Feed (fn = lpr)          | .002004   | .002005             | .002006   |
| Р                 | P6-9     | Low alloy steel      | ● | Cutting Speed (vc = sfm) | 260-530   | 260-530             | 260-530   |
|                   |          |                      |   | Feed (fn = lpr)          | .002003   | .002004             | .002005   |
| м                 | M12-14   | Stainless steel      | • | Cutting Speed (vc = sfm) | 200-330   | 200-330             | 200-330   |
|                   |          |                      |   | Feed (fn = lpr)          | .002004   | .002005             | .002005   |
| К                 | K15-20   | Grey cast iron       | ● | Cutting Speed (vc = sfm) | 200-430   | 200-430             | 200-430   |
|                   |          |                      |   | Feed (fn = lpr)          | .002003   | .002004             | .002004   |
| N                 | N21-28   | Non-ferrous metals   | 0 | Cutting Speed (vc = sfm) | 490-1310  | 490-1310            | 490-1310  |
|                   |          |                      |   | Feed (fn = lpr)          | .002006   | .003006             | .003006   |

Optimal

○ Secondary

TESTED. PROVEN.

HaasTooling.com | HaasCNC.com





### Selection of Insert:

Feedrate: Fmax = W x .075

Depth of cut: D(min) should be larger than the corner radius of the insert ( $r\epsilon$ )



## Finishing Guide:

Cutting a groove to a desired diameter may cause the workpiece to deflect, which can affect subsequent turning operations.

Before performing the turning operation, it may be necessary to relieve the deflection, to achieve the desired diameter and surface finish.

- 1. Groove to the desired diameter.
- 2. Pull the tool back a total distance of ap/2 to relieve any deflection.
- 3. Return to the desired cutting diameter, and continue the external or internal turning operation.







# **Technical Details**

# **Roughing Guide:**

- When using the HG tool in a standard ISO turning application, the cutting forces affect both the side and the tip of the tool. This can cause deflection when the cutting direction changes.
- After a turning operation, it may be necessary to relieve this deflection before cutting a groove, in order to achieve the desired diameter and finish on the workpiece.
- To relieve the deflection, offset the tool .004" from the endpoint, and then return to the original position to perform the grooving application.

### Machining a Large Corner Radius or Chamfer:

- HG tools create an unequal cutting load (P1 and P2) when machining a radius that is larger than the corner radius of the insert (rε).
- These unequal cutting forces may break the insert or holder.
- Follow the steps below to eliminate this possibility.
- 1. Groove to the required depth at the endpoint of the radius or chamfer
- 2. Return to the start and face down to the start of the radius or chamfer
- 3. Form the radius or chamfer
- 4. Continue machining from the start of the groove



HAAS TOOLING. C









