Speeds and Feeds

- 1) Select your material in the ISO colored chart with respect to material description and hardness (HB).
- 2) Start with the recommended cutting speed, v_c (ft/min) and feed per revolution, f_n (in/rev). Adjust the cutting speed and/or feed rate based on your cutting conditions.

Material				Recommended Cutting Speed			Recommended Feed Per Revolution						
Group		Description	Hardness (HB)	Min	Starting Value	Max	Tool Diameter (in)						
							0.315 Ø	0.394 Ø	0.472 Ø	0.551 Ø	0.630 Ø	0.787 Ø	1.000 Ø
	1	Low-Carbon Steels, Short Chipping	<125	262	410	558	0.004-0.008	0.005-0.01	0.006–0.012	0.007–0.015	0.007–0.018	0.01-0.019	0.012-0.02
	2	Medium- and High-Carbon Steels	<220	345	459	591	0.004-0.011	0.005-0.014	0.006–0.015	0.008-0.018	0.009–0.018	0.011-0.02	0.012-0.02
P	3	Alloy Steels and Tool Steels	<330	164	246	328	0.004-0.011	0.005-0.014	0.006–0.015	0.008-0.018	0.009–0.018	0.011-0.02	0.012-0.02
	4	Alloy Steels and Tool Steels	340–450	164	246	328	0.004-0.011	0.005-0.014	0.006–0.015	0.007–0.018	0.007–0.018	0.009-0.019	0.01–0.02
	5	Ferritic, Martensitic, and PH Stainless Steels	<330	160	210	260	0.004-0.008	0.004-0.009	0.004-0.01	0.006–0.011	0.006–0.013	0.007-0.014	0.009–0.017
	6	High-Strength Ferritic, Martensitic, and PH Stainless Steels	350–450	160	210	260	0.004-0.008	0.004-0.009	0.004-0.01	0.006–0.011	0.006–0.013	0.007-0.014	0.009–0.017
	1	Austenitic Stainless Steel	130–200	130	260	360	0.002-0.009	0.003-0.009	0.004-0.01	0.004-0.01	0.004-0.01	0.005-0.012	0.006-0.013
M	2	High-Strength Austenitic Stainless and Cast Stainless Steel	150–230	110	180	250	0.002-0.009	0.003-0.009	0.004-0.01	0.004-0.01	0.004-0.01	0.005-0.012	0.006–0.013
	3	Duplex Stainless Steel	135–275	70	110	160	0.002-0.009	0.003-0.009	0.004-0.01	0.004-0.01	0.004-0.01	0.005-0.012	0.006–0.013
	1	Gray Cast Iron	120–290	197	312	558	0.006-0.011	0.006-0.013	0.007-0.014	0.008-0.017	0.01–0.019	0.011-0.02	0.013-0.022
К	2	Low- and Medium-Strength Ductile Irons (Nodular) and Compacted Graphite Irons	130–260	197	246	295	0.006–0.011	0.006–0.012	0.007–0.013	0.008-0.016	0.01–0.019	0.011–0.02	0.013-0.022
	3	High-Strength Ductile Irons and Austempered Ductile Iron	180–350	131	213	295	0.006-0.012	0.007-0.013	0.007–0.014	0.008-0.016	0.008-0.017	0.009–0.019	0.01–0.02

NOTE: Through coolant is recommended for greater than 3XD applications.

Speeds and Feeds

Feed Rate, Per Revolution (in/min)

$$v_f = f_n \cdot n$$

Feed Per Revolution (in/rev)

$$f_n = \frac{v_f}{n}$$

Cutting Speed (ft/min)

$$v_c = \frac{\pi \cdot D_{tool} \cdot n}{12}$$

Spindle Speed (rev/min)

$$n = \frac{v_c \cdot 12}{\pi \cdot D_{tool}}$$

Material Removal Rate (in³/min)

$$MMR = D_{tool} \cdot f_n \cdot v_c \cdot 3$$

Imperial

Symbol	Definition	Unit
V_f	Feed rate	in/min
f_n	Feed per revolution	in/rev
V_c	Cutting speed	ft/min (SFM)
n	Spindle speed	rev/min (RPM)
D_{tool}	Tool cutting diameter	in
MMR	Material removal rate	(in³/min)
Z	Number of teeth/flutes	