Speeds and Feeds

- 1) Select your material in the ISO colored chart with respect to material description and hardness (HB).
- 2) Start with the recommended cutting speed, v_c (m/min) and feed per revolution, f_n (mm/rev). Adjust the cutting speed and/or feed rate based on your cutting conditions.

Material				Recommended Cutting Speed			Recommended Feed Per Revolution						
Group		Description	Hardness (HB)	Min	Starting Value	Max	Tool Diameter (mm)						
							8Ø	10 Ø	12 Ø	14 Ø	16 Ø	20 Ø	25 Ø
	1	Low-Carbon Steels, Short Chipping	<125	90	125	170	0.11-0.20	0.13-0.25	0.14–0.31	0.17-0.39	0.19–0.45	0.25-0.48	0.30-0.52
	2	Medium- and High-Carbon Steels	<220	105	140	180	0.11-0.28	0.12-0.35	0.16–0.37	0.21-0.46	0.23-0.46	0.28-0.50	0.30-0.52
P	3	Alloy Steels and Tool Steels	<330	50	75	100	0.11-0.28	0.12-0.35	0.16–0.37	0.21-0.46	0.23-0.46	0.28-0.50	0.30-0.52
	4	Alloy Steels and Tool Steels	340–450	50	75	100	0.11–0.28	0.12-0.35	0.16–0.37	0.17-0.36	0.19–0.45	0.22-0.48	0.25–0.50
	5	Ferritic, Martensitic, and PH Stainless Steels	<330	50	65	80	0.10-0.20	0.10-0.23	0.10-0.25	0.14-0.29	0.16–0.32	0.18-0.36	0.22-0.42
	6	High-Strength Ferritic, Martensitic, and PH Stainless Steels	350–450	50	65	80	0.10-0.20	0.10-0.23	0.10-0.25	0.14-0.29	0.16–0.32	0.18–0.36	0.22-0.42
	1	Austenitic Stainless Steel	130–200	40	80	110	0.06-0.22	0.08-0.23	0.09-0.24	0.10-0.25	0.11–0.26	0.13-0.28	0.13-0.32
М	2	High-Strength Austenitic Stainless and Cast Stainless Steel	150–230	35	55	75	0.06-0.22	0.08-0.23	0.09-0.24	0.10-0.25	0.11–0.26	0.13-0.28	0.13–0.32
	3	Duplex Stainless Steel	135–275	20	35	50	0.06-0.22	0.08-0.23	0.09-0.24	0.10-0.25	0.11–0.26	0.13-0.28	0.13–0.32
	1	Gray Cast Iron	120–290	60	95	170	0.15-0.29	0.16–0.32	0.17–0.35	0.21-0.42	0.25-0.48	0.28-0.52	0.32-0.56
к	2	Low- and Medium-Strength Ductile Irons (Nodular) and Compacted Graphite Irons	130–260	60	75	90	0.15–0.29	0.16–0.30	0.17-0.33	0.21–0.41	0.25–0.48	0.28-0.52	0.32-0.56
	3	High-Strength Ductile Irons and Austempered Ductile Iron	180–350	40	65	90	0.16-0.30	0.17-0.33	0.18-0.36	0.20-0.41	0.21–0.44	0.23-0.48	0.25-0.50

NOTE: Through coolant is recommended for greater than 3XD applications.

Speeds and Feeds

Feed Rate, Per Revolution (mm/min)

$$v_f = f_n \cdot n$$

Feed Per Revolution (mm/rev)

$$f_n = \frac{v_f}{n}$$

Cutting Speed (m/min)

$$v_c = \frac{\pi \cdot D_{tool} \cdot n}{1000}$$

Spindle Speed (rev/min)

$$n = \frac{v_c \cdot 1000}{\pi \cdot D_{tool}}$$

Material Removal Rate (mm³/min)

$$MMR = \frac{D_{tool} \cdot f_n \cdot v_c}{4}$$

Metric

Symbol	Definition	Unit		
V_f	Feed rate	mm/min		
f_n	Feed per revolution	mm/rev		
V_{c}	Cutting speed	m/min (SMM)		
n	Spindle speed	rev/min (RPM)		
D_{tool}	Tool cutting diameter	mm		
MMR	Material removal rate	(mm³/min)		
Z	Number of teeth/flutes			