HAAS SERVICE AND OPERATOR MANUAL ARCHIVE

VF-Series Service Manual 96-8100 English June 1997

- This content is for illustrative purposes.
- Historic machine Service Manuals are posted here to provide information for Haas machine owners.
- Publications are intended for use only with machines built at the time of original publication.
- As machine designs change the content of these publications can become obsolete.
- You should not do mechanical or electrical machine repairs or service procedures unless you are qualified and knowledgeable about the processes.
- Only authorized personnel with the proper training and certification should do many repair procedures.

WARNING: Some mechanical and electrical service procedures can be extremely dangerous or life-threatening. Know your skill level and abilities.

All information herein is provided as a courtesy for Haas machine owners for reference and illustrative purposes only. Haas Automation cannot be held responsible for repairs you perform. Only those services and repairs that are provided by authorized Haas Factory Outlet distributors are guaranteed.

Only an authorized Haas Factory Outlet distributor should service or repair a Haas machine that is protected by the original factory warranty. Servicing by any other party automatically voids the factory warranty.

This section is intended for use in determining the solution to a known problem. Solutions given are intended to give the individual servicing the CNC a pattern to follow in, first, determining the problem's source and, second, solving the problem.

The troubleshooting tips are organized in this section according to the area of the CNC that may be giving sign of a problem. (Ex.: Out-of round circles in drilling will be found under the heading General Machine Operation - Accuracy).

If the problem you are experiencing cannot be found under the heading you expect, please try several other possible headings. If the problem is still not found, contact Haas Automation for further details.

BEFORE YOU BEGIN:

USE COMMON SENSE

Many problems are easily overcome by correctly evaluating the situation. All machine operations are composed of a program, tools, and tooling. You must look at all three before blaming one as the fault area. If a bored hole is chattering because of an overextended boring bar, don't expect the machine to correct the fault. Don't suspect machine accuracy if the vise bends the part. Don't claim hole mis-positioning if you don't first center-drill the hole.

FIND THE PROBLEM FIRST

Many mechanics tear into things before they understand the problem, hoping that it will appear as they go. We know this from the fact that more than half of all warranty returned parts are in good working order. If the spindle doesn't turn, remember that the spindle is connected to the gear box, which is connected to the spindle motor, which is driven by the spindle drive, which is connected to the I/O BOARD, which is driven by the computer. The moral here is don't replace the spindle drive if the belt is broken. Find the problem first; don't just replace the easiest part to get to.

DON'T TINKER WITH THE MACHINE

There are hundreds of parameters, wires, switches, etc., that you can change in this machine. Don't start randomly changing parts and parameters. Remember, there is a good chance that if you change something, you will incorrectly install it or break something else in the process. Consider for a moment changing the processor's board. First, you have to download all parameters, remove a dozen connectors, replace the board, reload and reconnect, and if you make one mistake or bend one tiny pin it WON'T WORK. You always need to consider the risk of accidentally damaging the machine anytime you work on it. It is cheap insurance to double-check a suspect part before physically changing it. The less work you do on the machine the better.

1. GENERAL MACHINE OPERATION

1.1 Machine Not Running

Machine cannot be powered on.

- Check input voltage to machine (see "Electrical Service").
- Check main circuit breaker at top right of electrical cabinet; switch must be at the on position.
- Check overvoltage fuses (see "Electrical Service").
- Check wiring to POWER OFF button on front control panel.
- Check wiring to AUTO OFF relay to IOPCB.
- Replace IOPCB (see "Electrical Service").
- Replace POWER PCB (see "Electrical Service").

Machine can be powered on, but turns off by itself.

- Check settings \#1 and \#2 for Auto Off Timer or Off at M30.
- Check alarm history for OVERVOLTAGE or OVERHEAT shutdown.
- Check AC power supply lines for intermittent supply.
- Check wiring to POWER OFF button on front control panel.
- Replace IOPCB (see "Electrical Service").
- Check Parameter 57 for Power Off at E-STOP.
- Replace MOTIF PCB (see "Electrical Service").

Machine turns on, keyboard beeps, but no CRT display.

- Check for green POWER LED at front of CRT.
- Check for power connections to CRT from IOPCB.
- Check video cable (760) from VIDEO PCB to CRT.
- Replace CRT (see "Electrical Service").

Machine turns on, CRT works, but no keyboard keys work.

- Check keyboard cable (700B) from VIDEO to SKBIF PCB.
- Replace keypad (see "Electrical Service").
- Replace SKBIF PCB (see "Electrical Service").

Constant E-Stop Condition (will not reset)

- Check Hydraulic counterbalance pressure, low pressure switches and cabling.

TROUBLESHOOTING

1.2 Vibration

Vibration is a subjective evaluation with perceptions varying among individuals, making it difficult to determine in mild cases if there is an actual problem. Because the VF Series uses a gear head, it will be noisier than a direct drive or belt system. In obvious cases, it is a matter of determining the source - which is not easy, since all parts rotate together and sound can be transferred readily. Vibrations also need to be distinguished from noise such as a bad bearing. We will assume that vibrations would be something that could be felt by putting your hand on the spindle covers. One crude method of measurement would be to take an indicator on a magnetic base extended 10 inches between the table and spindle housing and observe the reading of the indicator. A reading of more than .001 would indicate excessive vibration. The two common sources of noise are the spindle and axis drives. Most complaints about vibration, accuracy, and finish can be attributed to incorrect machining practices such as poor quality or damaged tooling, incorrect speeds or feeds, or poor fixturing. Before concluding that the machine is not working properly, ensure that good machining practices are being observed. These symptoms will not occur individually (Ex. A machine with backlash may vibrate heavily, yielding a bad finish.). Put all of the symptoms together to arrive at an accurate picture of the problem.

Machine vibrates while jogging the axis with the hand wheel.

- The HAAS control uses very high gain accelerations curves. This vibration as you jog is simply the servos quickly trying to follow the handle divisions. If this is a problem, try using a smaller division on the handle. You will notice the vibration more at individual clicks than when you are turning the handle faster. This is normal.

The machine vibrates excessively in a cut.

- This is a tough one to call because machining practices come into play. Generally speaking, the least rigid element of a cut is the tool because it is the smallest part. Any cutter will vibrate if pushed beyond its tensile strength. In order to eliminate the machine as the source of the problem, you need to check the spindle and the backlash of the axes as described in the following sections. Once machining practices have been eliminated as the source of vibration, observe the machine in both operation and "cutting air." Move the axes (individually) without the spindle turning and then turn the spindle without moving the axes. Isolate whether the vibration comes from the spindle head or from an axis. Isolate the source of vibration per "Spindle", "Servo Motors/Leadscrews", and "Gearbox and Spindle Motor" sections.

1.3 Accubacy

Before you complain of an accuracy problem, please make sure you follow these simple do's and don'ts:

- Ensure that the machine has been sufficiently warmed up before cutting parts. This will eliminate mispositioning errors caused by thermal growth of the leadscrews (see "Thermal Growth" section).
- Don't ever use a wiggler test indicator for linear dimensions. They measure in an arc and have sine/cosine errors over larger distances.
- Don't use magnetic bases as accurate test stops. The high accel/decel of the axis can cause them to move.
- Don't attach magnetic base to the sheet metal of the spindle head or table.
- Don't mount the magnetic base on the spindle dogs.
- Don't check for accuracy/repeatability using an indicator with a Iong extension.
- Ensure that test indicators and stops are absolutely rigid and mounted to machined casting surfaces (e.g. spindle head casting, spindle nose, or the table).
- Don't rapid to position when checking accuracy. The indicator may get bumped and give an inaccurate reading. For best results, feed to position at 5-10 inches per minute.
- Check a suspected error with another indicator or method for verification.
- Ensure that the indicator is parallel to the axis being checked to avoid tangential reading errors.
- Center drill holes before using jobber length drills if accuracy is questioned.
- Once machining practices have been eliminated as the source of the problem, determine specifically what the machine is doing wrong.

Machine will not interpolate a round hole.

- Check that the machine is level (see "Installation" section).
- Check for backlash ("Servo Motors/Leadscrews" section).

Bored holes do not go straight through the workpiece.

- Check that the machine is level (see "Installation" section).
- Check for squareness in the Z axis.

人) Machine bores holes out-of-round.

- Check that the machine is level (see "Installation" section).
- Check the sweep of the machine (see "Spindle Sweep Adjustment" section).
\geqslant Bored holes are out of round or out of position.
- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- The spindle is not parallel to the Z axis. Check the spindle sweep to the table and the squareness of the Z axis with a cylinder square. If available use a spindle master bar and indicate the spindle to the Z axis.

Machine mis-positions holes.

- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- Check that the machine is level (see "Installation" section).
- Check for backlash (see "Servo Motors/Leadscrews" section).
- Check the squareness of the X axis to the Y axis.

Machine leaves large steps when using a shell mill.

- Check that the machine is level (see "Installation" section).
- Check the sweep of the machine (see "Spindle Sweep Adjustment" section).
- Cutter diameter too large for depth of cut.

Boring depth inaccurate

- Check for thermal growth of the leadscrew (see "Thermal Growth" section).
- Check the hydraulic counterbalance system pressure. If pressure is low, check for:
, abnormal noises from counterbalance system
- oil leaks (esp. at fittings and at filter at top of cylinder)
, bound cylinder

1.4 Finish

Machining yields a poor finish.

- Check for gearbox vibration. This is the most common cause of a poor finish.
- Check for backlash ("Accuracy/Backlash" section)
- Check the condition of the tooling and the spindle.
- Check for spindle failure.
- Check the condition of the servo motors.
- Check that the is machine level.

1.5 Thermal Growth

A possible source of accuracy and positioning errors is thermal growth of the leadscrew. As the machine warms up, the leadscrews expand in all three linear axes, causing accuracy and positioning errors, or inaccurate boring depths. This is especially critical in jobs that require high accuracy, machining multiple parts in one setup, or machining one part with multiple setups.

NOTE: On machines equipped with linear scales, thermal growth will not affect machine positioning or accuracy. However, it is still recommended that the machine be warmed up before cutting parts.

NOTE: The leadscrew will always expand away from the motor end.

VERIFY THERMAL GROWTH

There are a number of ways to verify the problem. The following procedure will verify thermal growth of the X-axis leadscrew in a machine that has not been warmed up:

1. Home the machine. In MDI mode, press POSIT and PAGE DOWN to the OPER page.
2. Jog to an offset location on the table (example: $X-15.0^{\prime \prime} \quad Y-8.0^{\prime \prime}$). Select the X axis and press the ORIGIN key to zero it. Select the Y axis and zero it.
3. Press the OFSET key, then scroll down to G110 (or any unused offset). Cursor to X and press PART ZERO SET twice. This will set XO, YO at this position.
4. Enter the following program. It will start at the new zero position, rapid 10 inches in the X direction, feed the final .25 inches at 10 inches/min., and then repeat the X movement.
```
G00 G90 G110 X0 Y0;
X10.0;
G01 X10.25 F10.;
M99;
```

5. In order to set up the indicator, run the program in SINGLE BLOCK mode, and stop it when X is at 10.25 ". Set the magnetic base on the table, with the indicator tip touching the spindle housing in the X-axis, and zero it.
6. Exit SINGLE BLOCK mode, and run the program for a few minutes. Enter SINGLE BLOCK mode again, stop the program when X is at 10.25 ", and take a final reading on the indicator. If the problem is thermal growth, the indicator will show a difference in the X position.

NOTE: Ensure the indicator setup is correct as described in "Accuracy" section. Errors in setup are common, and often incorrectly appear to be thermal growth.
7. A similar program can be written to test for thermal growth in the Y and Z axes, if necessary.

SOLUTIONS

Since there are many variables that affect thermal growth, such as the ambient temperature of the shop and program feed rates, it is difficult to give one solution for all problems.

Thermal growth problems can generally be eliminated by running a warm-up program for approximately 20 minutes before machining parts. The most effective warm-up is to run the current program, at an offset Z position above the part or table, with the spindle "cutting air". This will allow the leadscrews to warm up to the correct temperature and stabilize. Once the machine is at temperature, the leadscrews won't expand any further, unless they're allowed to cool down. A warm-up program should be run after each time the machine is left idle.

2. SPINDLE

2.1 Not Tubning

Spindle not turning.

- If there are any alarms, refer to "Alarms" section.
- Check that the spindle turns freely when machine is off.
- If motor turns but spindle does not, see "Belt Assembly" and "Spindle Motor \& Transmission" sections.
- Command spindle to turn at 1800 RPM and check spindle drive display. If display blinks "bb", check spindle orientation switch ("Spindle Orientation" section). If spindle drive does not light the RUN LED, check forward/reverse commands from IOPCB ("Electrical Service").
- Check the wiring of analog speed command from MOTIF PCB to spindle drive (cable 720).
- If spindle is still not turning, replace MOTIF PCB ("Electrical Service").
- If spindle is still not turning, replace spindle drive ("Electrical Service").
- Check for rotation of the gearbox (if applicable) or the motor (VF-0). If the motor or gearbox operates, check the drive belt ("Belt Assembly" section).
- Disconnect the drive belt. If the spindle will not turn, it is seized and must be replaced ("Spindle Assembly" section).

NOTE: Before using the replacement spindle, the cause of the previous failure must be determined.

2.2 Noise

Most noises attributed to the spindle actually lie in the motor/gearbox or drive belt of the machine. Isolate the sources of noise as follows:

Excessive noise coming from the spindle head area.

On VF-1 through 6 models, first determine if the noise is related to the RPM of the motor or the RPM of the spindle. For example: If the noise appears at 2000 RPM in high gear, listen for a similar noise at 500 RPM in low gear. If the same noise persists, the problem lies with the gearbox. If the noise disappears, the problem could be either the gearbox or the spindle, and further testing is necessary.

NOTE: The gear ratio is 1:1.25 in high gear, and 3.2:1 in low gear.

- Remove the head covers and check the machine's drive belt tension ("Tension Adjustment" section).
> If the noise persists, turn the drive belt over on the pulleys. If the noise is significantly different, the belt is at fault. Replace the belt ("Belt Assembly" section).
> If the noise does not change, remove the belt and go on to the next step.
- Check the pulleys for excessive runout (more than 0.003" axial or radial).
- Run the motor (VF-0) or the gearbox (VF-1, VF-2, VF-3) with the drive belt disconnected. If the noise persists, the problem lies with the gearbox/motor. If it disappears, go on to the next step.
- Check for the correct amount of lubrication to the spindle bearings (0.5-1.0 cc every two hours) in a an air mist-lubricated spindle.
> If the spindle is not getting lubrication, correct the problem per the lube and air diagram at the back of this manual and replace the spindle ("Spindle Assembly" section).
> If the spindle is getting lubrication, replace the spindle ("Spindle Assembly" section).

2.3 Overheating

When investigating complaints of overheating, a temperature probe must be used to accurately check the temperature at the top of the spindle taper. The temperature displayed in Diagnostics is not relevant. A machine that runs at high RPM continuously will have a much warmer spindle than a machine that runs at a lower RPM. New spindles tend to run much warmer than spindles that have already been broken in. In order to run a valid test on a new spindle, ensure that it is properly broken in.

To break in a spindle, run the following program (it will take approximately 6 hours):

N100 S300 M03	G04 P900.	N700 S6000 M03
G04 P900.	M05	G04 P900.
M05	G04 P900.	M05
G04 P900.	G04 P900.	G04 P900.
N200 S1000 M03	N500 S4000 M03	G04 P900.
G04 P900.	G04 P900.	N800 S7500 M03
M05	M05	G04 P900.
G04 P900.	G04 P900.	M05
N300 S2000 M03	G04 P900.	G04 P900.
G04 P900.	N600 S5000 M03	G04 P900.
M05	G04 P900.	M99
G04 P900.	M05	
G04 P900.	G04 P900.	
N400 S3000 M03	G04 P900.	

NOTE: This program will step the spindle speed from 300 RPM up to either 5000 or 7500 RPM at regular intervals of time, stop the spindle and allow it to cool to room temperature, then restart it so the temperature can be monitored

- If at any time during this procedure the spindle temperature rises above 150 degrees, start the procedure over from the beginning.

If the spindle fails this test for any reason, check the following:

- Check for correct amount of lubrication.

NOTE: Over lubrication is a common source of overheating. Check the oil flow carefully.

- Check the drive belt tension. Too-tight belts will cause heating of the top bearing in the spindle housing.
- Ensure that the correct oil is being used (refer to "Maintenance Schedule").

2.4 Stalling / Low Torque

Generally, complaints of stalling or low torque relate to incorrect tooling or machining practices. A spindle that is tending to seize will yield a poor finish machining, run very hot and very loud. Investigate machining problems before concluding the problem exists with the spindle or spindle drive.

2.5 Spindle Drive

Low line voltage may prevent the spindle from accelerating properly. If the spindle takes a long time to accelerate, slows down or stays at a speed below the commanded speed with the load meter at full load, the spindle drive and motor are overloaded. High load, low voltage, or too fast accel/decel can cause this problem.

If the spindle is accelerated and decelerated frequently, the regenerative load resistor inside the control may heat up. If this resistor heats beyond $100^{\circ} \mathrm{C}$, a thermostat will generate an "overheat" alarm.

If the regen load resistors are not connected or open, this could then result in an overvoltage alarm. The overvoltage occurs because the regenerative energy being absorbed from the motor while decelerating is turned into voltage by the spindle drive. If this problem occurs, the possible fixes are to slow the decel rate or reduce the frequency of spindle speed changes.

2.6 Orientation

Spindle loses correct orientation.

- Check alarm history, looking for spindle overload and axis overcurrent alarms. These alarms mean the machine is not being properly operated.
- Check the orientation ring for tightness. Ensure the shaft on which the ring mounts is clean and is free of grease and oil.
- Check the orientation ring for cracks near the bolt holes or near the balancing holes. > If there are cracks, replace the ring.
- Check the shot pin on the gearbox for binding, damage, and proper operation. Replace it if it is damaged.
- Check the switch on the shot pin against the Diagnostic display. Replace the switch if it is found to be faulty.

2.7 Tools Sticking In Taper

Tool sticking in the taper causes ATC to be pulled up; accompanied by a popping noise as the tool holder pops out of the spindle taper.

NOTE: This problem may occur after loading a cold tool into a hot spindle (a result of thermal expansion of the tool holder inside the spindle taper). It may also occur due to heavy milling, milling with long tooling, or cuts with heavy vibration. If sticking only occurs during these situations, no service is necessary.

- Check the condition of the tooling, verifying the taper on the tooling is ground and not turned. Look for damage to the taper caused by chips in the taper or rough handling. If the tooling is suspected, try to duplicate the symptoms with different tooling.
- Check the condition of the spindle taper. Look for damage caused by chips or damaged tooling. Also, look for damage such as deep gouges in the spindle taper caused by tool crashing.
- Duplicate the cutting conditions under which the deflection occurs, but do not execute an automatic tool change. Try instead to release the tool using the tool release button on the front of the spindle head. If sticking is observed, the deflection is not caused by improper ATC adjustment, but is a problem in the spindle head on the machine.
- Ensure the spindle is not running too hot.

3. SERVO MOTORS / LEADSCREWS

3.1 Not Operating

All problems that are caused by servo motor failures should also register an alarm. Check the alarm history to determine the problem's cause before any action is taken.

Servo motor is not functioning.

- Check the power cable from rear electrical cabinet to ensure connection is tight.
- Encoder is faulty or contaminated (Alarms 139-142, 153-156, 165-168, 182-185). Replace motor assembly.
- Open circuit in motor (Alarms 139-142, 153-156, 182-185). Replace motor assembly ("Axis Motor Removal / Installation").
- Motor has overheated, resulting in damage to the interior components (Alarms 135-138, 176). Replace motor assembly ("Axis Motor Removal/Installation").
- Wiring is broken, shorted, or missing shield (Alarms 153-156, 175, 182-185).
- Dust in the motor from brushes has shorted out the motor (VF-E only) (Alarms 153-156, 175, 182185). Replace motor assembly ("Axis Motor Removal/Installation").
- Motor has overheated; no damage to the interior components. OVERHEAT alarm has been triggered. After thorough check of motor (DO NOT DISASSEMBLE!), take necessary steps to eliminate the problem and alarm to resume operation. If motor is still inoperable, replace motor assembly ("Axis Motor Removal/Installation").
- Check for broken or loose coupling between the servo motor and the lead screw. Replace or repair the coupling ("Axis Motor Removal/Installation")
- Check for a damaged lead screw, and replace if necessary ("Lead Screw Removal and Installation" section).

NOTE: If a lead screw fails, it is most often due to a failed bearing sleeve. When replacing the lead screw in an older machine, always replace the bearing sleeve with the current angular contact bearing sleeve ("Bearing Sleeve Removal and Installation" section).

3.2 Noise

Lead screw noise is usually caused by a lack of lubrication and is usually accompanied by heating. Other causes are misalignment, bearing sleeve damage, or ball nut damage. Check the alarm history of the machine and look for axis overcurrent and following error alarms.

NOTE: Do not replace lead screws or bearing sleeves without due consideration; they are extremely durable and reliable. Verify that customer complaints are not due to tooling, programming, or fixturing problems.

Servo motor noise.

- Disconnect the servo motor from the lead screw and rotate by hand. If the noise persists, replace the motor assembly ("Axis Motor Removal/Installation" section).
- Noise is caused by motor brushes (VF-E only). No problems will occur and noise should eventually go away.
- Noise is caused by bearings. Rolling, grinding sound is heard coming from the motor. ENSURE NOISE IS NOT COMING FROM THE BRUSHES. If bearings are making a consistently loud sound, replace the bearing sleeve.

Lead screw noise.

- Ensure oil is getting to the lead screw through the lubrication system (See Air and Oil Diagrams). Look for a plugged metering valve.
- Check for damage to the bearing sleeve.

NOTE: The current angular contact design sleeve has a fixed pre-load; it cannot be adjusted.

- Run the axis back and forth. The motor will get very hot if the bearing sleeve is damaged. If so, turn the axis by hand and feel for roughness in the lead screw. Loosen the clamp nuts at both ends of the lead screw. If the symptom disappears, replace the bearing sleeve. Be certain to check for damage to the lead screw shaft where the bearing sleeve is mounted.
> If the noise persists, the lead screw is damaged and must be replaced. When replacing the lead screw in an older machine, always replace the bearing sleeve with the current angular contact design bearing sleeve.
- Check the lead screw for misalignment. If incorrect, perform alignment procedure.
- Misalignment in the lead screw itself will tend to cause the lead screw to tighten up and make excessive noise at both ends of the travel. The ballnut may get hot. Misalignment radially at the yoke where the lead screw ball nut mounts is indicated by heating up of the ball nut on the lead screw, and noise and tightness through out the travel of the lead screw. Misalignment at the yoke where the ball nut mounts is indicated by noise and tightness at both ends of the travel of the lead screw. The ball nut may get hot.

3.3 Accuracy / Backlash

Accuracy complaints are usually related to tooling, programming, or fixturing problems. Eliminate these possibilities before working on the machine.

Poor mill table-positioning accuracy.

- Check for a loose encoder on the servo motor. Also, ensure the key in the motor or the lead screw is in place and the coupling is tight.
- Check for backlash in the lead screw as outlined below:

INITIAL PREPARATION -

Turn the VMC ON. ZERO RET the machine and move the mill table to the approximate center of its travel in the X and Y directions. Move the spindle head to approximate center of the Z-axis travel, also.

CHECKING X-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 3-1.

Figure 3-1. Dial indicator in position to check X-axis.
2. Set dial indicator and the "Distance to go" display in the HANDLE JOG mode to zero as follows:
$>$ Zero the dial indicator.
> Press the MDI button on the control panel.
> Press the HANDLE JOG button on the control panel.
The "Distance to go" display on the lower right hand corner should read: $\quad \mathrm{X}=0 \quad \mathrm{Y}=0 \quad \mathrm{Z}=0$
3. Set the rate of travel to .001 on the control panel and jog the machine .010 in the positive (+) X direction. Jog back to zero (0) on the display. The dial indicator should read zero (0) $\pm .0001$.
4. Repeat Step 3 in the negative (-) direction.

total deviation between the dial indicator and the control panel display should not EXCEED . 0002.

An alternate method for checking backlash is to place the dial indicator as shown in Fig. 3-1 and manually push on the mill table in both directions. The dial indicator should return to zero after releasing the table.

NOTE: The servos must be on to check backlash by this method.

TROUBLESHOOTING Ler $\sqrt{\text { SERVICE MANUAL }}$

CHECKING Y-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 3-2.

Figure 3-2. Dial indicator in position to check Y-axis.
2. Set dial indicator and the "Distance to go" display in the HANDLE JOG mode to zero as follows:
$>$ Zero the dial indicator.
> Press the MDI button on the control panel.
> Press the HANDLE JOG button on the control panel.
The "Distance to go" display on the lower right hand corner should read: $\quad \mathrm{X}=0 \quad \mathrm{Y}=0 \quad \mathrm{Z}=0$
3. Set the rate of travel to .001 on the control panel and jog the machine .010 in the positive (+) Y direction. Jog back to zero (0) on the display. The dial indicator should read zero (0) $\pm .0001$.
4. Repeat Step 3 in the negative (-) direction.
total deviation between the dial indicator and the control panel display should not EXCEED . 0002.

An alternate method for checking backlash is to place the dial indicator as shown in Fig. 3-2 and manually push on the mill table in both directions. The dial indicator should return to zero after releasing the table.

NOTE: The servos must be on to check backlash by this method.

CHECKING Z-AXIS:

1. Set up a dial indicator and base on the mill table as shown in Fig. 3-3.
2. Manually push up and down on the spindle head while listening for a 'clunk'. Also, watch for any rapid change in the dial indicator. Either of these indicate possible backlash.

NOTE: Servos must be on to check for backlash in the Z-axis.
NOTE: Do not mistake deflection for backlash in the system.

Figure 3-3. Dial indicator in position to check Z-axis.
If backlash is found in the system, check for the following possible causes:

- Loose SHCS attaching the ball nut to the nut housing. Tighten the SHCS as described in Mechanical Service.
- Loose SHCS attaching the nut housing to the mill table, spindle head, or saddle, depending on the axis. Tighten the SHCS as described in Mechanical Service.
- Loose clamp nut on the bearing sleeve. Tighten the SHCS on the clamp nut.
- Loose motor coupling. Tighten as described in Mechanical Service.
- Broken or loose flex plates on the motor coupling.

NOTE: The coupling cannot be serviced in the field and must be replaced as a unit if it is found to be defective.

- Loose SHCS attaching the bearing sleeve to the motor housing. Tighten as described in "Lead Screw Removal and Installation".
- Defective thrust bearings in the bearing sleeve. Replace the bearing sleeve as outlined in "Bearing Sleeve Removal and Installation".
- Loose SHCS attaching the axis motor to the motor housing. If the SHCS are found to be loose, inspect the motor for damage and if none is found, tighten as described in "Axis Motor Removal/Installation". If damage is found, replace the motor.
- Incorrect backlash compensation number in the parameter in the machine. Check Parameters 13, 27, and 41.
- Worn lead screw.

3.4 Vibration

Excessive servo motor vibration.

- If no "A" axis is present, swap the suspected bad servo motor with the "A" driver and check to see if there is a driver problem. If needed, replace the DRIVER PCB ("Electrical Service" section).
- Check all Parameters of the suspected axis against the Parameters as shipped with the machine. If there are any differences, correct those and determine how the Parameters were changed. PARAMETER LOCK should normally be on.
- A bad motor can cause vibration if there is an open or short in the motor. A short would normally cause a GROUND FAULT or OVERCURRENT alarm; check the ALARMS. An ohmmeter applied to the motor leads should show between 1 and 3 ohms between leads, and over 1 megohm from leads to chassis. If the motor is open or shorted, replace.

3.5 Overheating

Servo motor overheating.

- If a motor OVERHEAT alarm occurs (ALARMS 135-138), check the Parameters for an incorrect setting. Axis flags in Parameters 1, 15, or 29 can invert the overheat switch (OVER TEMP NC).
- If the motor is actually getting hot to the touch, there is excessive load on the motor. Check the user's application for excessive load or high duty cycle. Check the lead screw for binding ("Accuracy/ Backlash" section). If the motor is binding by itself, replace in accordance with "Axis Motor Removal/ Installation".

3.6 Following Erbors

FOLLOWING ERROR (VF-E only) or SERVO ERROR TOO LARGE alarms 103-106, 187 occur on one or more axes sporadically.

- Check DC bus voltage on diagnostics page \#2 (VF-E only). Verify this voltage on the drive cards in the control panel. If it is at the low side of the recommended voltages, change the transformer tap to the next lower voltage group as explained in the Installation Manual.
- Check motor wiring.
- Replace driver card ("Electrical Service").
- Replace servo motor ("Axis Motor Removal/Installation").

Z-axis motor overcurrent.

Brake won't release (leadscrew won't rotate)

- alarm not cleared
- low pressure switch blown
- brake power fuse blown
- brake power transformer blown
- brake power rectifier blown
- cabling pinched
- brake failed

4. AUTOMATIC TOOL CHANGER

4.1 Deflection

Deflection is usually caused by ATC misalignment, and sometimes caused by damaged or poor quality tooling, a damaged spindle taper, or a damaged drawbar. Before beginning any troubleshooting, observe the direction of the ATC deflection.

During a tool change, ATC appears to be pushed down.

- Check to see if pull studs on the tool holder are correct and tight.
- Check the adjustment of the "Z" offset ("Setting Parameter 64").

NOTE: If the offset is incorrect a tool changer crash has occured and a thorough inspection of the ATC is necessary at this time.

- Check the adjustment of the " Z " offset. Check parameters 71,72 , and 143 against the values that are in the documentation sent with the machine.
- Ensure the tool holders are held firmly in place by the extractor forks.
- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button is pressed. If they do not move freely, the a ATC will be pushed down about $1 / 4$ " before the tool holder is seated in the taper, resulting in damage to the roller bolts on the ATC shuttle. Replace the drawbar.
- If TSC, check for excessive coolant tip wear.

Tool holder sticking in the spindle taper causes the ATC to be pulled up as the spindle head is travelling up; accompanied by a popping noise as the tool holder pops out of the spindle taper.

NOTE: This problem may occur after loading a cold tool into a hot spindle (a result of thermal expansion of the tool holder inside the spindle taper. It may also occur in cuts with heavy vibration. If sticking occurs only during these circumstances, no service is necessary.

- Check the condition of the customer's tooling, verifying the taper on the tool holder is ground and not turned. Look for damage to the taper caused by chips in the taper or rough handling. If the tooling is suspected, try to duplicate the symptoms with different tooling.
- Check the condition of the spindle taper. Look for damage caused by chips or damaged tooling. Also, look for damage such as deep gouges in the spindle taper caused by tool crashing. See "Spindle Assembly" section for spindle cartridge replacement.
- Duplicate the cutting conditions under which the deflection occurs, but do not execute an automatic tool change. Try instead to release the tool using the tool release button on the front of the spindle head. If sticking is observed, the deflection is not caused by improper ATC adjustment, but is a problem in the spindle head on the machine. See the "Spindle Assembly" section in Mechanical Ser vice for spindle cartridge replacement.

During a tool change, ATC appears to be pulled up; no popping noises.

- Check the adjustment of the "Z" offset ("Setting Parameter 64" section).

NOTE: If the offset is incorrect, a tool changer crash has occurred, and a thorough inspection of the ATC is necessary at this time.

- Ensure the roller bolts on the shuttle of the ATC are tight against the V-guides on the ATC holding arm. If the lower right roller bolt is loose against the V -guide, the upper right bolt is probably bent. See the following section ("ATC Crashing") or "Roller Bolt Replacement", for roller bolt replacement.

NOTE: Bent roller bolts are a symptom of another problem with the ATC. Repair the bent roller bolt and then isolate the ATC problem.

- Check Parameter 71 against the values that are in the documentation sent with the machine.
- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button is pressed. If they do not move freely, the ATC will be pushed down about $1 / 4$ " before the tool holder is seated in the taper, resulting in damage to the roller bolts on the ATC shuttle. Replace drawbar.

Tool holders twist against extractor fork during a tool change.

- Check the alignment of the ATC in the X and Y axes ("Automatic Tool Changer Alignment" section).

Tool holders spin at all pockets of the ATC when the ATC shuttle retracts.

- ATC is misaligned in the " Y " axis. Realign ATC ("Automatic Tool Changer Alignment" section).

NOTE: Observe the direction the tool holder rotates, as this will be the direction in which the "Y" axis of the ATC needs to be moved.

Tool holders spin only at certain pockets of the ATC when the ATC shuttle retracts.

- Check all the extractor forks to ensure they are centered in the pocket of the ATC. Also, see above. See "Extractor Fork Replacement" section, if necessary.

NOTE: If the ATC shows the problem as described here, each extractor fork must be checked and centered to eliminate the possibility of the ATC being aligned against an incorrectly-centered fork.

4.2 Grashing

Crashing of the ATC is usually a result of operator error. The most common ATC crashes are outlined as follows:

Shuttle crashes into spindle when a tool change is commanded (tool holder is in the pocket facing the spindle head).

- Rotate the carousel to an empty pocket. Refer to the Programming and Operation manual for correct operation.

> NOTE: This crash is fairly common and is a result of operator error. If the ATC is stopped in the middle of tool change cycle, the operator must command the ATC to an empty pocket before the machine will operate correctly. Repeated crashes of this type can damage the I/O board, the slip clutch, and the shuttle motor in the ATC.

During a tool change spindle crashes into top of the tool holder after a turret rotation.

When the spindle head moves down over the top of the tool holder during a tool change, the pull stud will bind inside the drawbar bore of the spindle, forcing the ATC down, bending the upper right roller bolt on the ATC shuttle or completely breaking it off. Tool holder is not held correctly in the extractor fork, possibly held only in one side of the extractor and at an odd angle.

- Check all of the extractor forks on the ATC.

During a tool change spindle crashes into top of the tool holder after a turret rotation.

The balls in the drawbar do not move freely, causing the ATC to be forced down far enough to bend the upper right roller bolt or completely break it off.

- Ensure the balls on the drawbar move freely in the holes in the drawbar when the tool release button is pressed. If this failure occurs, check all of the extractor forks on the ATC for damage and repair the spindle drawbar.
- Check drawbar height and set according to the appropriate section, if necessary.

ATC properly deposits a tool holder in the spindle, but the tools are dropped onto the machine table when the shuttle retracts.

- Inspect the balls and the Belleville springs in the drawbar. See appropriate section and replace drawbar.

The part or fixture on the mill table crashes into long tooling or into the ATC itself during a tool change.

- Program the machine to move the part out of the way of the ATC. Inspect the pocket involved in the crash for damage and replace parts as necessary.

The part or fixture on the mill table crashes into long tooling or into the ATC itself when machining.

- Either reposition the tools to remove the interference, or program the carousel to rotate long tooling out of the way of the part (USE THIS ONLY AS A LAST RESORT). CAUTION! If the carousel has to be programmed to rotate long tools clear of the part, the correct carousel position must be programmed back in before a tool change can be executed.

NOTE: If these crashes occur, thoroughly inspect the ATC for damage. Pay close attention to the extractor forks, the sliding covers on the ATC carousel, and the roller bolts on the ATC shuttle. See appropriate section for extractor fork replacement.

4.3 Breakace

Breakage of the ATC is caused by either very hard and repeated crashes or excessive TSC coolant tip wear.

ATC shuttle is broken off of the holding plate.

- Carefully inspect the bosses on the shuttle casting (where the roller bolts mount) for damage to the threads or cracks. If any of the bosses are cracked, replace the casting. Realign the tool changer after repairing the machine.

ATC extractor forks are damaged after breakage.

- Check the condition of the mounting holes in the carousel. If the threads are damaged, they must be repaired or the carousel replaced. See appropriate section for extractor fork replacement.

4.4 Noisy Operation

To isolate noise(s) in the ATC, carefully observe the ATC in operation and look for the following:

ATC makes noise as the shuttle moves.

- Check the adjustment of the roller bolts on the ATC ("Roller Bolt Replacement" section). Loose roller bolts can cause the ATC to make a clunking noise when the shuttle is commanded to move. Tight roller bolts can cause the shuttle motor to labor excessively, possibly damaging the motor or the I/O board. In this case, the shuttle may also move too slowly.
- Check for damage to the trap door on the ATC cover. See appropriate section for trap door replacement.
- Check for missing plastic riders on the ATC shutter. See "ATC Trap Door Replacement" for shutter replacement.
- Ensure the guide pin mounted to the holding plate is not bent and does not scrape the ATC cover during movement. See "ATC Trap Door Replacement" for guide pin replacement.
- Listen for damage to the gear train in the shuttle motor. If the motor is found to be the source of the noise, replace the motor ("Shuttle Motor Removal" section). DO NOT try to repair the motor or to further isolate the noise in the motor. ATC makes noise during carousel rotation.
- Check to ensure the Geneva driver on the turret motor is tight and properly adjusted ("Shuttle Motor Removal" section). If the Geneva driver is found to be loose, check for damage to the Geneva star. Any roughness in the slots will require that it be replaced ("Geneva Star Replacement" section).
- Check the adjustment of the Geneva driver in relation to the Geneva star ("Geneva Star Replacement" section). If the adjustment is too loose, the carousel will vibrate heavily and make a loud clanking noise during carousel rotation. If the adjustment is too tight, the turret motor will labor excessively and the carousel may appear to move erratically.

NOTE: If the turret motor adjustment is tight for extended periods, the turret motor, Geneva star, and the I/O board may be damaged. If the adjustment of the Geneva star appears tight at some pockets and loose at others, the problem lies with the Geneva star. Check the concentricity of the star relative to the bearing housing on the carousel assembly. If the concentricity of the star is proven to within specification and the problem still persists, the Geneva star must be replaced ("Geneva Star Replacement" section).

- Ensure the screws holding the turret motor to the mounting plate are tight ("Turret Motor Removal" section).
- Ensure the screws attaching the motor mounting plate to the shuttle casting are tight.
- Check for excessive noise in the gear train of the turret motor. See appropriate section for turret motor replacement.

NOTE: If the motor is found to be the source of noise, replace the motor assembly (motor, mounting plate, and Geneva driver).

DO NOT attempt to repair the motor or to further isolate the problem in the motor.

4.5 Spindle Orientation

A switch is used to sense when the pin drops in to lock the spindle. When the pin drops the switch opens, indicating orientation is complete. The normally-closed side of this switch is wired to the spindle drive and commands it into the COAST STOP condition. This is done to make sure that the spindle motor is not powered when the pin is locking the spindle. If, during a tool change, the dogs on the spindle shaft do not align with the keys on the ATC carousel, the spindle orientation may be at fault.

The orientation of the spindle is as follows:

1) If the spindle is turning, it is commanded to stop,
2) Pause until spindle is stopped,
3) Spindle orientation speed is commanded forward,
4) Pause until spindle is at orientation speed,
5) Command spindle lock air solenoid active,
6) Pause until spindle locked status is active and stable,
7) If not locked after time-out time, alarm and stop.

ATC out of orientation with the spindle. Incorrect spindle orientation will cause the ATC to crash as the shuttle moves. Alarm 113 will be generated.

- Check the orientation of the machine.

ATC will not run.

- In all cases where the tool changer will not run, an alarm is generated to indicate either a shuttle in/ out problem or a turret rotation problem. These alarms will occur either on an attempt to change tools (ATC FWD) or ZERO RETURN the machine (AUTO ALL AXES). Use the appropriate alarm to select one of the problems following:

ATC shuttle will not move; shuttle is getting power (Command a tool change and feel for power being applied to the shuttle motor).

- Disconnect the slip clutch arm from the ATC shuttle and ensure the shuttle can move freely. If not, appropriate section for shuttle adjustment.
- Command a tool change with the shuttle disconnected.
> If the shuttle cycles, check the slip clutch on the ATC. See "Shuttle Installation" section for slip clutch replacement.

NOTE: The slip clutch should move the shuttle with a fair amount of force, but not so much that the shuttle cannot be made to slip when holding it back by hand. If the slip clutch is frozen, replace it. It cannot be rebuilt in the field.
$>$ If the shuttle does not cycle, the motor has failed and must be replaced. Turn the motor by hand and feel for binding in the gear train in the motor.

NOTE: The motor uses a large amount of gear reduction and should be hard to turn by hand.

ATC shuttle will not move; shuttle is not getting power.

- Command a tool change feel for power being applied to the shuttle motor.
- Check that the TC IN/TC OUT LED on the I/O PCB is illuminated when a tool change takes place.
$>$ If the LED lights, check the fuse FU5 on the POWER PCB or FU1 on the I/O PCB. Otherwise, replace the I/O PCB ("Electrical Service").
$>$ If the LED does not light, check cables I/O-P1-510 and I/O-P2-520.

ATC turret will not rotate; turret motor is getting power.

- Command a tool change feel for power being applied to the turret motor.
- If power is applied but the output shaft on the motor does not turn, check for binding between the turret motor assembly and the Geneva star ("Automatic Tool Changer" section). Check for damage to the Geneva star or the Geneva driver. Check for a broken turret motor ("Turret Motor Removal" section).

NOTE: Do not attempt to repair the motor or to further isolate the problem in the motor.

ATC turret will not rotate; turret motor is not getting power.

- Command a tool change feel for power being applied to the turret motor.
- Check that the TC CW/ TC CCW LED on the I/O PCB is illuminated when a tool change takes place.
$>$ If the LED lights, check the fuse FU5 on the POWER PCB or FU1 on the I/O PCB. Otherwise, replace the I/O PCB (Electrical Service).
> If the LED does not light, check cables I/O-P1-510 and I/O-P2-520.

5. GEARBOX AND SPINDLE MOTOR

The gearbox cannot be serviced in the field and must be replaced as a unit. NEVER remove a motor from a VF-Series mill that has a gearbox, as this will damage the gearbox and void the warranty.

5.1 Noise

When investigating complaints of gearbox noise, also refer to "Spindle" troubleshooting section. Gearboxes can be damaged by failed air solenoids, gearshift cylinders, or bearings, resulting in noisy operation. While gearbox vibration can cause a poor finish on a workpiece, noisy gearbox operation may not.

Excessive or unusual noise coming from the gearbox and/or spindle motor.

Operate the machine in both high and lowgears. Monitor the gearbox for noise in both gear positions and if the pitch of the noise varies with the motor or the output shaft speed.
> If the noise only occurs in one gear throughout the entire RPM range of that gear position, the problem lies with the gearbox, and it must be replaced ("Spindle Motor \& Transmission" section).
> If the noise occurs in both gear positions, disconnect the drive belt and repeat the previous step. If the noise persists, the gearbox is damaged and must be replaced, ("Spindle Motor \& Transmission" section).
> With the drive belt disconnected, run the machine at 1000 RPM in high gear. Command a change of direction and listen for a banging noise in the gearbox as the machine slows to zero RPM and speeds back up to 1000 RPM in reverse. If the noise occurs, the motor has failed and the gearbox must be replaced.

5.2 Gears Will Not Ghange

Machine will not execute a gear change.

NOTE: Whenever a gear change problem occurs, an alarm will also occur. Refer ALARMS section to diagnose each problem before working on the machine.

When a gear change is performed, the following sequence of events occurs:

1) If the spindle is turning, it is commanded to stop,
2) Pause until spindle is stopped,
3) Gear change spindle speed is commanded forward,
4) Pause until spindle is at speed,
5) Command high or low gear solenoid active,
6) Pause until in new gear or reversal time,
7) Alarm and stop if max gear change time elapsed,
8) If not in new gear, reverse spindle direction,
9) Turn off high and low gear solenoids.

- Check air supply pressure. If pressure is too low, the gears will not change.
- Check the air solenoid assembly on the solenoid bracket (rear of gearbox). If the solenoid operates properly and the limit switches on the gearbox operate properly, the problem lies with the gear change piston. Replace the gearbox ("Spindle Motor \& Transmission" section).
- Check contactor CB4.
5.3 Low Pressure Alarm

Alarm 179 (Low Pressure Transmission Oil) has been triggered.

- Check for low oil supply in reservoir.
- Check to see that pump motor is running.
- Check for an air leak in the suction side of the pump.
- Check for a bad pressure sensor.
- Check for a broken or damaged cable.
- Check for a worn pump head.

6. THROUGH THE SPINDLE GOOLANT

WARNING! Failure to check coolant tip wear regularly will result in tool changer damage.

6.1 Coolant Overflow

To begin troubleshooting, check the alarm history to determine the problem's cause before any action is taken.

Coolant pouring out of spindle head covers.

- Check for seal failure. If failure is found, replace the seal (TSC Service kit \#93-9000A). Refer to the appropriate steps in"TSC-Tool Release Piston Replacement" section for procedure.
- Check that the TSC drain line is intact. If necessary, replace with $5 / 32^{\prime \prime} 0 . D . X 32^{\prime \prime}$ Iong nylon tubing (24" long for VF-0/OE).
- Check pre-charge pressure in accordance with TSC "Pressure Regulator Adjustment' section and reset if necessary. Low pre-charge pressure can cause coolant to dump into the spindle head.
- Ensure the coolant pump relief valve has not been tampered with. (yellow paint band is intact). Check the coolant pump pressure (should be 140 psi), with a standard non-TSC tool holder in spindle. If pump pressure is above 140 psi, reset the pump relief valve in accordance with the "Setting TSC Pump Relief Valve" section.

Excessive coolant flow out of drain line.

Pulsating flow through tool and drain line.

- Check pre-charge pressure in accordance with TSC "Pressure Regulator Adjustment" section. Reset precharge pressure if necessary. Low pre-charge pressure will cause heavy or pulsating flow from the drain line.
- Check to make sure the main seal on the TRP does not leak when pre-charge is applied.
- Ensure the coolant pump relief valve has not been tampered with (yellow paint band is intact). Check the coolant pump pressure (should be 140 psi), with a standard non-TSC tool holder in spindle. If pump pressure is above 140 psi, reset pump relief valve in accordance with "Setting Pump Relief Valve" section.

6.2 Low Goolant

Alarm 151, "Low Thru Spindle Coolant"

- Check coolant tank level. Read the filter gauges and check the intake strainer to ensure there is no clogging. Use dirt indicator readings as applicable. Check coolant lines for any clogging or kinking. Clean or replace as needed.
- If received at start-up, check that the breaker hasn't tripped and that the pump is turning. Check the electrical continuity of cables.
- Check for pressure switch failure (refer to "Testing the Coolant Pressure Switch" section), and replace if necessary. Check "LO CLNT" bit in the diagnostics display ($0=$ pressure on, $1=$ pressure off).
- Check the pump pressure with TSC running and no tool in the spindle. Normal pressure is 75-80 PSI. Replace the pump if pressure is 60 psi or less.
- Another alarm generated during TSC operation can cause this alarm.
- Check the intake filter for tightness.
- Check the gasket for damage
- Check hose connections for tightness.

6.3 Goolant Tip Wear

Coolant tip is wearing quickly and needs frequent replacement.

- Check the filtration system and that the coolant is not contaminated.
- Check pre-charge pressure (refer to the TSC Pressure Regulator Adjustment" section). Heavy wear will occur if this pressure is too high.
- Main air supply below 85 psi can cause excessive pre-charge pressure and heavy coolant tip wear.

NOTE: Abrasive swarf from grinding or ceramic machining operations will cause heavy wear of TSC coolant pump, coolant tip and drawbar. This is not covered by warranty on new machines. Notify HAAS Service Dept. if machine is being used for this application.

6.4 Phe-Gharce Failube

Alarm 198, "Precharge Failure"

NOTE: This alarm only applies to the TSC system.

- Check for broken or disconnected pre-charge air line, and replace if necessary.
- Check if the "Tool Clamped" limit switch is sticking, and replace if necessary.
- Check the "Tool Clamped" limit switch adjustment (refer to "Tool Clamp/Unclamp Switch Adjustment").
- Check for low pre-charge pressure (refer to "Pressure Regulator Adjustment" section).
- Check pre-charge solenoid for proper operation.

7. CHIP CONVEYOR

Chip conveyor does not turn

- Check that Parameter 209 bit switch ENA CNVR is enabled.
- Check that the front enclosure door is competely closed and door switches function properly. Check that hub is connected to auger with bolt.
- Check that all conveyor fuses are intact. [Single phase motor uses 2 fuses (VF-0,1/2 ; Three phase motor uses 3 fuse (VF-3,4,6,8)]
- Check thermal reset button on conveyor motor body.

NOTE: Thermal reset indicates further problems: Ensure conveyor is not jammed, all necessary fuses are intact, check motor connector and I/O Board conveyor relays

Chip conveyor is moving in the wrong direction

- Toggle Parameter 209 bit switch REV CNVR to reverse direction of conveyor.
- Check I/O Board conveyor relays.

Chip conveyor reverses, then shuts down

- Check that the conveyor is free of obstruction.
- Check that Parameters are at Default settings.
- Check that Discrete Input CNVYR (conveyor overload) cycles from 0-1 or 1-0 (0 means overload condition)

NOTE: If it does cycle check the motor for burnout or binding. If it does not cycle check the I/O board.

8. HYDRAULIC COUNTERBALANCE

8.1 Meghanigal Diagnosis

Important! Hydraulic counterbalance oil contains red dye for easier recognition.

Noise in the system

- Slight moan or creaking at slow speeds is normal for rubber seals.
- While Z-axis is in motion a whistle sound at tank location is normal fluid flow.
- Verify cylinder is seated correctly in counterbore. If not then reseat the cylinder.
- Bumping or grinding noise indicates a mechanical cylinder failure. Replace cylinder assembly.
- Look for galling and wear on cylinder shaft. If so replace the cylinder assembly.

System is not holding pressure and/or has an E-STOP (Alarm 107) that cannot be reset. Check for accurate pressure readings. If low then the following items need to be checked:

- Check for leaks at all cylinder fittings. If leaking then replace cylinder assembly.
- Collapse the lower Z-axis waycover and look for any red oil pooled at the bottom of the base. If so, then fittings or seals could be damaged. Replace cylinder assembly.
- Remove cylinder vent fitting. If there is red oil inside the vent cavity then the cylinder assembly needs replacement.
- Check for leaks at all hydraulic tank fittings. If leaking then tank assembly needs replacement.

Over Current alarms

- Pressure is set too high.
- Pressure is set too low.
- Too much oil has been added. (Insufficient gas volume causes large pressure rise)
- Hydraulic cylinder is binding or is misaligned. Replace cylinder assembly.
- Length of replacement cylinder incorrect.

9. LINEAR SCALES

Perform the "Linear Scale Alignment Check" if any of the linear scale alarms (279-290) are received.

9.1 Linear Scale Alicnment Gheck

NOTE: This procedure is only accurate if the machine is square.

1. Remove the right side way cover for the X-axis to gain access to it's linear scale. Remove the front way cover for the Y-axis to gain access to it's linear scale.
2. Access to the Z-axis linear scale is from the top of the machine. Removal of the head cover may be necessary.
3. Tap the encoder head lightly and note any position change indicated by the control. If there is any change, ensure that the encoder head/encoder bracket fasteners are tight.
4. If problems persist, check for correct gaps at each end of travel by inserting tools T-1548 and T-1549 into their respective gaps, as shown in Figure 9-1. These tools must fit without having to force them. If the tool can be moved more than $0.003^{\prime \prime}$, the fit is too loose.

Figure 9-1. Linear scale alignment check tools.
If the tools can be inserted in accordance with the above instructions, the linear scale is correctly aligned.
5. Check for flatness and parallelism of the linear scale(s) (with respect to the linear guide path) with a magnetic base and indicator setup. It should be possible to insert the tools correctly at both ends of travel.

Runout specifications are:

$$
\begin{array}{ll}
\text { Flatness: } & 0.005^{\prime \prime} \text { along full travel } \\
\text { Parallel: } & 0.005^{\prime \prime} \text { along full travel }
\end{array}
$$

6. Note results and contact Haas Automation for further instruction. DO NOT attempt to align the linear scales.

10. ELEGTRICAL TROUBLESHOOTING

> CAUTION! Before working on any electrical components, power off the machine and wait approximately 10 minutes. This will allow the high voltage power on the brushless amplifiers to be discharged.

10.1 Electrical Alabms

Axis Drive Fault Alarm

- Blown amplifier - indicated by a light at bottom of amplifier when power is on. Replace amplifier.
- Amplifier or MOCON is noise sensitive. If this is the case, the alarm can be cleared and the axis will run normally for a while.

To check an amplifier, switch the motor leads and control cables between the amplifier and the one next to it. If the same problem occurs with the other axis, the amplifier must be replaced. If the problem stays on the same axis, either the MOCON or control cable. The problem could also be the axis motor itself, with leads either shorted to each other or to ground, which is very rare.

- Amplifier faulting out for valid reason, such as overtemp, overvoltage, or +/-12 volt undervoltage condition. This usually results from running a servo intensive program, or unadjusted 12 volt power supply. Replace amplifier.

Overvoltage could occur if regen load is not coming on, but this does not usually happen. The problem could also be the axis motor itself, with leads either shorted to each other or to ground, which is very rare.

Axis Overload

- The fuse function built into the MOCON has been overloaded, due to a lot of motor accel/decels, or hitting a hard stop with the axis. This safety function protects the amplifier and motor, so find the cause and correct it. If the current program is the cause, change the program. If the axis hits a hard stop, the travel limits may be set wrong.

Phasing Error

- The MOCON did not receive the proper phasing information from the motors. DO NOT RESET the machine if this alarm occurs. Power the machine down and back up. If the problem persists, it is probably a broken wire or faulty MOCON connectors.

Servo Error Too Large

- This alarms occurs when the difference between the commanded axis position and the actual position becomes larger the the maximum that is set in the parameter.

This condition occurs when the amplifier is blown, is not receiving the commands, or the 320 volt power source is dead. If the MOCON is not sending the correct commands to the amplifier, it is probably due to a broken wire, or a PHASING ERROR that was generated.

Axis Z Fault or Z Channel Missing

- During a self-test, the number of encoder counts was found to be incorrect. This is usually caused by a noisy environment, and not a bad encoder. Check all shields and grounds on the encoder cables and the motor leads that come into the amplifiers. An alarm for one axis can be caused by a bad grounding on the motor leads of another axis.

Axis Cable Fault

- During a self-test, the encoder cable signals were found to be invalid. This alarm is usually caused by a bad cable, or a bad connection on the motor encoder connectors. Check the cable for any breaks, and the encoder connectors at the motor controller board. Machine noise can also cause this alarm, although it is less common.

Alarm 101, "MOCON Comm. Failure"

- During a self-test of communications between the MOCON and main processor, the main processor does not respond, and is suspected to be dead. This alarm is generated and the servos are stopped. Check all ribbon cable connections, and all grounding. Machine noise can also cause this alarm, although it is less common.

Alarm 157, "MOCON Watchdog Fault"

- The self-test of the MOCON has failed. Replace the MOCON.

10.2 Processor Stack Diagnostic

(DISCONNECT CABLES FROM A NORMAL OPERATING SYSTEM)

Remove low voltage cable from the Video \& Keyboard PCB

- Processors LED's are normal
- Runs fine and the CRT is Normal
- No keypad beep

Remove low voltage cable from the MOTIF PCB

- Processors LED's are normal then RUN goes out
- No screen

Remove the Data \& or Address buss from the Video \& Keyboard PCB

- Processors LED's Normal - then Run goes out

Remove the Data \& or Address buss from the MOTIF PCB

- Processors LED's Normal - then Run goes out

Remove the Data \& or Address buss from the Micro Processor PCB

- Processors LED's - CRT and Run are out

10.3 Keyboard Diagnostic

NOTE: Refer to the "Cable Locations" section of this manual for a drawing of the Keyboard Interface PCB.

KEYBOARD GRID

The following is an example of how to troubleshoot the keypad:

NOTE: Keypad Diodes 1-24 correspond to chart numbers 1-24

Example

1. Pressing the RESET button will cause diodes 1 and 17 to conduct.

- With the POWER OFF read across diode 1.
- A typical reading is between .400-.700 ohms, note your reading.

2. Press and hold the RESET button. If the diode is conducting, the reading should drop about . 03 ohms.

- (If your reading was . 486 and it dropped to .460 , for a difference of .026 ; the diode is good)
- The same will hold true for diode 17 in this example. If the reading stays the same or there is no change, the diode is not conducting. Pull P2 and read between pins 1 and 17.
- Press and hold <RESET>. The meter should read a short (0 ohms) if not the keypad is bad.

ALARMS

Any time an alarm is present, the lower right hand corner of the screen will have a blinking "ALARM". Push the ALARM display key to view the current alarm. All alarms are displayed with a reference number and a complete description. If the RESET key is pressed, one alarm will be removed from the list of alarms. If there are more than 18 alarms, only the last 18 are displayed and the RESET must be used to see the rest. The presence of any alarm will prevent the operator from starting a program.

The ALARMS DISPLAY can be selected at any time by pressing the ALARM MESGS button. When there are no alarms, the display will show NO ALARM. If there are any alarms, they will be listed with the most recent alarm at the bottom of the list. The CURSOR and PAGE UP and PAGE DOWN buttons can be used to move through a large number of alarms. The CURSOR right and left buttons can be used to turn on and off the ALARM HISTORY DISPLAY.

The following alarm list shows the alarm numbers, the text displayed along with the alarm, and a detailed description of the alarm, what can cause it, when it can happen, and how to correct it.

ALARM NUMBER AND TEXT:

101 MOCON Comm. Failure

102 Servos Off

Y Servo Error
Too Large
105 Z Servo Error
Too Large
106 A Servo Error
Too Large
107 Emergency Off

108 X Servo Overload

POSSIBLE CAUSES:

During a self-test of communications between the MOCON and main processor, the main processor does not respond, and is suspected to be dead. Check cable connections and grounding.

Indicates that the servo motors are off, the tool changer is disabled, the coolant pump is off, and the spindle motor is stopped. Caused by EMERGENCY STOP, motor faults, tool changer problems, or power fail.

Too much load or speed on X-axis motor. The difference between the motor position and the commanded position has exceeded a parameter. The motor may also be stalled, disconnected, or the driver failed. The servos will be turned off and a RESET must be done to restart. This alarm can be caused by problems with the driver, motor, or the slide being run into the mechanical stops.
same as 103.
same as 103.
same as 103.

EMERGENCY STOP button was pressed. Servos are also turned off. After the E-STOP is released, the RESET button must be pressed at least twice to correct this; once to clear the E-STOP alarm and once to clear the Servo Off alarm.

This alarm will also be generated if there is a low pressure condition in the hydraulic counterbalance system. In this case, the alarm will not reset until the condition has been corrected.

Excessive load on X-axis motor. This can occur if the load on the motor over a period of several seconds or even minutes is large enough to exceed the continuous rating of the motor. The servos will be turned off when this occurs. This can be caused by running into the mechanical stops but not much past them. It can also be caused by anything that causes a very high load on the motors.

Y Servo Overload
Z Servo Overload
A Servo Overload
No Interrupt

Shuttle In Fault

Shuttle Out Fault

Turret Rotate Fault

Spindle Orientation Fault

Spindle High Gear Fault

Spindle Low Gear Fault

Over Voltage

Low Air Pressure
same as 108.
same as 108.
same as 108.
Electronics fault. Problem in the Microprocessor assembly (68030, Video, or MOCON boards).

Tool changer not completely to right. During a tool changer operation the tool in/out shuttle failed to get to the in position. Parameters 62 and 63 can adjust the time-out times. This alarm can be caused by anything that jams the motion of the slide or by the presence of a tool in the pocket facing the spindle. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.

Tool changer not completely to left. During a tool change operation the tool in/out shuttle failed to get to the out position. Parameters 62 and 63 can adjust the time-out times. This alarm can be caused by anything that jams the motion of the slide or by the presence of a tool in the pocket facing the spindle. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.

Tool carousel motor not in position. During a tool changer operation the tool turret failed to start moving or failed to stop at the right position. Parameters 60 and 61 can adjust the time-out times. This alarm can be caused by anything that jams the rotation of the turret. A loss of power to the tool changer can also cause this, so check CB4, relays K9-K12, and fuse F1.

Spindle did not orient correctly. During a spindle orientation function, the spindle is rotated until the lock pin drops in; but the lock pin never dropped. Parameters 66,70,73, and 74 can adjust the time-out times. This can be caused by a trip of circuit breaker CB4, a lack of air pressure, or too much friction with the orientation pin.

Gearbox did not shift into high gear. During a change to high gear, the spindle is rotated slowly while air pressure is used to move the gears but the high gear sensor was not detected in time. Parameters 67, 70 and 75 can adjust the time-out times. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.

Gearbox did not shift into low gear. During a change to low gear, the spindle is rotated slowly while air pressure is used to move the gears but the high gear sensor was not detected in time. Parameters 67, 70 and 75 can adjust the time-out times. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.

Incoming line voltage is above maximum. The servos will be turned off and the spindle, tool changer, and coolant pump will stop. If this condition remains for 4.5 minutes, an automatic shutdown will begin.

Air pressure dropped below 80 PSI for a period defined by Parameter 76. The "Low Air Pr" alarm will appear on the screen as soon as the pressure gets low, and this alarm appears after [Parameter 76] has elapsed. Check your incoming air pressure for at least 100 PSI and ensure that the regulator is set at 85 PSI .

Low Lub or
Low Pressure

Control Overheat

Spindle Drive Fault

Tool Not Clamped

Power Down Failure

Low Battery

Shuttle Fault

Gear Fault

No Turret Mark

M Fin Fault

Tool Unclamped

Way lube is low or empty or there is no lube pressure or too high a pressure. Check tank at rear of mill and below control cabinet. Also check connector on the side of the control cabinet. Check that the lube lines are not blocked.

The control internal temperature is above 150 degrees F. This can be caused by almost anything in the control overheating. But is usually caused by overheat of the two regen resistors for servos and spindle drive. This alarm will also turn off the servos, spindle drive, coolant pump, and tool changer. One common cause of this overheat condition is an input line voltage too high. If this condition remains for 4.5 minutes, an automatic shutdown will begin.

Overheat or failure of spindle drive or motor. The exact cause is indicated in the LED window of the spindle drive inside the control cabinet. This can be caused by a stalled motor, shorted motor, overvolt age, undervoltage, overcurrent, overheat of motor, or drive failure.

Memory batteries need replacing within 30 days. This alarm is only generated at power on and indicates that the 3.3 volt Lithium battery is below 2.5 volts. If this is not corrected within about 30 days, you may lose your stored programs, parameters, offsets, and settings.

Tool shuttle not initialized at power on, CYCLE START or spindle motion command. This means that the tool shuttle was not fully retracted to the Out position.

Gearshifter is out of position when a command is given to rotate the spindle. This means that the two speed gear box is not in either high or low gear but is somewhere in between. Check the air pressure, the solenoids circuit breaker CB4, and the spindle drive.

Tool carousel motor not in position. The turret motor only stops in one position indicated by a switch and cam on the Geneva mechanism. This alarm is only generated at power-on. The AUTO ALL AXES button will correct this but be sure that the pocket facing the spindle afterwards does not contain a tool.

M-Fin was active at power on. Check the wiring to your M code interfaces. This test is only performed at power-on.

The tool appeared to be unclamped during spindle orientation, a gear change, a speed change, or TSC start-up. The alarm will also be gener ated if the tool release piston is energized during Power Up. This can be caused by a fault in the air solenoids, relays on the I/O assembly, the drawbar assembly, or in the wiring.

When clamping or powering up the machine, the Tool Release Piston is not HOME. This is a possible fault in the air solenoids, relays on the IO Assembly, the drawbar assembly, or wiring.

Machine did not turn off when an automatic power-down was commanded. Check wiring to POWIF card on power supply assembly, relays on the IO assembly, and the main contactor K1.

Spindle Locked

Tool Clamp Fault

X Motor Over Heat

Y Motor Over Heat
Z Motor Over Heat
A Motor Over Heat

X Motor Z Fault

Y Motor Z Fault
Z Motor Z Fault
A Motor Z Fault

Spindle Not Locked

Time-outCall Your Dealer

X Limit Switch

Y Limit Switch
Z Limit Switch

A Limit Switch

Spindle Turning
Z and Tool
Interlocked

Shot pin did not release. This is detected when spindle motion is commanded. Check the solenoid that controls the air to the lock, relay 28 , the wiring to the sense switch, and the switch.

When UNCLAMPING the Tool did not release from spindle when commanded. Check air pressure and solenoid circuit breaker CB4. Can also be caused by misadjustment of drawbar assembly.

Servo motor overheat. The temperature sensor in the motor indicates over 150 degrees F. This can be caused by an extended overload of the motor such as leaving the slide at the stops for several minutes.
same as 135 .
same as 135 .
same as 135

Encoder marker pulse count failure. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at P1-P4.
same as 139
same as 139
same as 139.

Shot pin not fully engaged when a tool change operation is being performed. Check air pressure and solenoid circuit breaker CB4. This can also be caused by a fault in the sense switch that detects the position of the lock pin.

Time allocated for use prior to payment exceeded. Call your dealer.

Axis hit limit switch or switch disconnected. This is not normally possible as the stored stroke limits will stop the slides before they hit the limit switches. Check the wiring to the limit switches and connector P5 at the side of the main cabinet. Can also be caused by a loose encoder shaft at the back of the motor or coupling of motor to the screw.
same as 145
same as 145

Normally disabled for rotary axis.
Spindle not at zero speed for tool change. A signal from the spindle drive indicating that the spindle drive is stopped is not present while a tool change operation is going on.

Tool changer not at home and \mathbf{Z} is not either at machine home or above. If RESET, E-STOP, or POWER OFF occurs during tool change, Z-axis motion and tool changer motion may not be safe. Check the position of the tool changer and remove the tool if possible. Re-initialize with the AUTO ALL AXES button but be sure that the pocket facing the spindle afterwards does not contain a tool.

For machines with Through the Spindle Coolant only. This alarm will shut off the spindle, feed, and pump all at once. Check for low coolant tank level,

Low Thru Spindle Coolant
any filter or intake strainer clogging, or for any kinked or clogged coolant lines.

152	Self Test Fail	Control has detected an electronics fault. All motors and solenoids are shut down. This is most likely caused by a fault of the processor board stack at the top left of the control. Call your dealer.
153	X-axis Z Ch Missing	Broken wires or encoder contamination. All servos are turned off. This can also be caused by loose connectors at P1-P4.
154	Y-axis Z Ch Missing	same as 153.
155	Z-axis Z Ch Missing	same as 153.
156	A-axis Z Ch Missing	same as 153.
157	MOCON Watchdog Fault	The self-test of the MOCON has failed. Replace the MOCON.
158	Video/Keyboard PCB Failure	Internal circuit board problem. The VIDEO PCB in the processor stack is tested at power-on. This could also be caused by a short in the front panel membrane keypad. Call your dealer.
159	Keyboard Failure	Keyboard shorted or button pressed at power on. A power-on test of the membrane keypad has found a shorted button. It can also be caused by a short in the cable from the main cabinet or by holding a switch down during power-on.
160	Low Voltage	The line voltage to control is too low. This alarm occurs when the AC line voltage drops below 190 when wired for 230 volts or drops below 165 when wired for 208 volts.
161	X-Axis Drive Fault	Current in \mathbf{X} servo motor beyond limit. Possibly caused by a stalled or overloaded motor. The servos are turned off. This can be caused by running a short distance into a mechanical stop. It can also be caused by a short in the motor or a short of one motor lead to ground.
162	Y-Axis Drive Fault	same as 161.
163	Z-Axis Drive Fault	same as 161.
164	A-Axis Drive Fault	same as 161.
165	X Zero Ret Margin Too Small	This alarm will occur if the home/limit switches move or are misadjusted. This alarm indicates that the zero return position may not be consistent from one zero return to the next. The encoder \mathbf{Z} channel signal must occur between $1 / 8$ and $7 / 8$ revolution of where the home switch releases. This will not turn the servos off but will stop the zero return operation.
166	Y Zero Ret Margin Too Small	Same as 165.
167	Z Zero Ret Margin Too Small	Same as 165.

alarms

A Zero Ret
Margin Too Small
Spindle Direction
Fault
Phase Loss L1-L2

Phase Loss L2-L3
Phase Loss L3-L1

Spindle Ref
Signal Missing

Tool Load Exceeded

Ground Fault Detected

Over Heat Shutdown

Over Voltage Shutdown

Divide by Zero
Low Pressure
Transmission Oil

Pallet Not Clamped

X Cable Fault

Y Cable Fault
Z Cable Fault
A Cable Fault
Spindle Not Turning
B Servo Error Too Large
B Servo Overload
B Motor Overheat
B Motor Z Fault
B Limit Switch
B Axis Z Ch Missing
B Axis Drive Fault
B Zero Ret Margin
Too Small

Not normally enabled for A-axis.

Problem with rigid tapping hardware. The spindle started turning in the wrong direction. System wired incorrectly.

Problem with incoming line voltage between legs L1 and L2. This usually indicates that there was a transient loss of input power to the machine.

Problem with incoming line voltage between legs L2 and L3.

Problem with incoming line voltage between legs L3 and L1.
The \mathbf{Z} channel pulse from the spindle encoder is missing for rigid tapping synchronization. Bad encoder or wiring.

The tool load monitor option is selected and the maximum load for a tool was exceeded in a feed. This alarm can only occur if the tool load monitor function is installed in your machine.

A ground fault condition was detected in the 115V AC supply. This can be caused by a short to ground in any of the servo motors, the tool change motors, the fans, or the oil pump.

An overheat condition persisted for 4.5 minutes and caused an automatic shutdown.

An overvoltage condition persisted for 4.5 minutes and caused an automatic shutdown.

Software error, or parameters are incorrect. Call your dealer.
Spindle coolant oil is low or low pressure condition in lines.

Used on horizontal mills only.
Cable from X-axis encoder does not have valid differential signals.
Same as 182.
Same as 182.
Same as 182.
Status from spindle drive indicates it is not at speed when expected.
Same as 103.
Same as 108.
Same as 135.
Same as 139.
Same as 148.
Same as 153.
Same as 161.
Same as 168.

Same as 182.

Coolant Spigot Failure
100 Hours Unpaid Bill
Precharge Failure

Negative RPM
Parameter CRC Error

Setting CRC Error

Lead Screw CRC Error

Offset CRC Error

Programs CRC Error

Internal Program Error

Queue Advance Error
Queue Allocation Error
Queue Cutter Comp Error

Insufficient Memory

Odd Prog Block

Program Integrity Error

Program RAM CRC Error

No. of Programs
Changed
Free Memory PTR
Changed

X Axis Phasing Error

Spigot failed to achieve commanded location after two (2) attempts.
Call your dealer.
During TSC operation, the precharge failed for greater than 0.1 seconds. It will shut off the feed, spindle and pump all at once. If received, check all air lines and the air supply pressure.

A negative spindle RPM was sensed.
Parameters lost maybe by low battery. Check for a low battery and low battery alarm.

Settings lost maybe by low battery. Check for a low battery and low battery alarm.

Lead screw compensation tables lost maybe by low battery. Check for CRC Error low battery and low battery alarm.

Offsets lost maybe by low battery. Check for a low battery and low battery alarm.

Users program lost maybe by low battery. Check for a low battery and low battery alarm.

Possible corrupted program. Save all programs to floppy disk, delete all, reload. Check for a low battery and low battery alarm.

Software Error; Call your dealer.
Software Error; Call your dealer.
Software Error; Call your dealer.

Not enough memory to store users program. Check the space available in the LIST PROG mode and possibly delete some programs.

Possible corrupted program. Save all programs to floppy disk, delete all, reload.

Possible corrupted program. Save all programs to floppy disk, delete all, reload. Check for a low battery and low battery alarm.

Electronics fault. Check for a low battery and low battery alarm. Replace the Processor board.

Indicates that the number of programs disagrees with the internal variable that keeps count of the loaded programs. Call your dealer.

Indicates the amount of memory used by the programs counted in the system disagrees with the variable that points to free memory. Call your dealer.

Error occured in phasing initialization of brushless motor. This can be caused by a bad encoder, or a cabling error.

Y Axis Phasing Error
Z Axis Phasing Error
A Axis Phasing Error
B Axis Phasing Error
C Axis Phasing Error
Door Lock Failure

X Transition Fault

Y Transition Fault
Z Transition Fault
A Transition Fault
B Transition Fault
C Transition Fault
Jog Handle Transition Fault

Spindle Transition Fault
Jog Handle Cable Fault
Spindle Enc. Cable Fault
Spindle Z Fault
Spindle Motor Overload

Spindle Following Error

Empty Prog or No EOB
Invalid Code

No End
Bad Number
Missing)
Unknown Code

String Too Long
Cursor Data Base Error
Number Range Error

Same as above.
In machines equipped with safety interlocks, this alarm occurs when the control senses the door is open but it is locked. Check the door lock circuit.

Illegal transition of count pulses in X axis. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at the MOCON or MOTIF PCB.

Same as above.
Same as 224.

Same as 224.

Cable from jog handle encoder does not have valid differential signals.
Cable from spindle encoder does not have valid differential signals.
Same as 139.
This alarm is generated in machines equipped with a Haas vector drive, if spindle motor becomes overloaded.

The error between the commanded spindle speed and the actual speed has exceeded the maximum allowable (as set in Parameter 184).

DNC program not found, or no end of program found.
RS-232 load bad. Data was stored as comment. Check the program being received.

Check input file for a number that has too many digits
Data entered is not a number.
Comment must end with a ") ".
Check input line or data from RS-232. This alarm can occur while editing data into a program or loading from RS-232.

Input line is too long. The data entry line must be shortened.
Software Error; Call your dealer.
Number entry is out of range.
249
250
251
252
253

254
greater

270 C Servo Error Too Large
271 C Servo Overload
272 C Motor Overheat
273 C Motor Z Fault
274 C Limit Switch
275 C Axis Z Ch Missing
276 C Axis Drive Fault
277 C Zero Ret Margin
Too Small
Prog Data
Begins 0dd
Program Data Error
Prog Data Struct Error
Memory Overflow
Electronics Overheat

Spindle Overheat

Program Data Error
Invalid DPRNT Format
Bad Language Version
Bad Language CRC
Rotary CRC Error

Parameter CRC Missing

Lead Screw CRC Missing

Rotary CRC Missing

C Cable Fault
X Axis Linear Scale
Z Fault

Y Axis Linear Scale
Z Fault

Possible corrupted program. Save all programs to floppy disk, delete all, then reload.

Same as 249.
Same as 249 .
Same as 249.
The control box temperature has exceeded 145 degrees F. This can be caused by an electronics problem, high room temperature, or clogged air filter.

This alarm is only generated in machines equipped with a Haas vector drive. The spindle temperature sensor sensed a high temperature for than 1.5 seconds.

Same as 249.
Macro DPRNT statement not structured properly.
Reload control software. Check the status of the Processor board.
Indicates FLASH memory has been corrupted or damaged.
Rotary table saved parameters (used by Settings 30,78) have a CRC error. Indicates a loss of memory - call your dealer.

RS-232 or floppy read of parameter had no CRC when Ioading from floppy or RS-232.

Lead screw compensation tables have no CRC when loading from floppy or RS-232.

Rotary table parameters have no CRC when loading from floppy or RS-232.
Macro variable file has a CRC error. Indicates a loss of memory.
Call your dealer.
Same as 103.
Same as 108.
Same as 135.
Same as 139 .
Same as 145 .
Same as 153.
Same as 161 .
Same as 165 .

Same as 182.
Encoder marker pulse count failure. This alarm usually indicates that the encoder has been damaged and encoder position data is unreliable. This can also be caused by loose connectors at P1-P4.

Same as alarm 279.
Nesting Too Deep
Exceeded Max Feed Rate Use a lower feed rate.

Invalid G Code

Unknown Code

Program End
Same as alarm 279.

Same as alarm 279.

Same as alarm 283.

Same as alarm 283.

Same as alarm 283.

Same as alarm 287.

Same as alarm 287.

Same as alarm 287.

Check your geometry. 0.0010 inches.

Use a lower feed rate.

Broken wires or encoder contamination. All servos are turned off. This can also be caused by loose connectors at P1-P4.

Cable from X-axis encoder does not have valid differential signals.

Check your geometry. \mathbf{R} must be less than or equal to half the distance from start to end within an accuracy of 0.0010 inches.

Check your geometry. Radius at start must match radius at end of arc within

Q in a canned cycle must be greater than zero.
$\mathbf{I}, \mathbf{J}, \mathbf{K}$, and \mathbf{Q} in a canned cycle must be greater than zero.

Subprogram nesting is limited to nine levels. Simplify your program.

G code not defined and is not a macro call.

Possible corruption of memory by low battery. Call your dealer.
End of subroutine reached before M99. Need an M99 to return from subroutine.

No P Code In M97, M98, or G65

Subprogram or Macro Not In Memory

Invalid P Code In M97, M98 or M99

X Over Travel Range

Y Over Travel Range
Z Over Travel Range
A Over Travel Range
No Feed Rate Specified
Auto Off Alarm
Sub Prog Without M99
Delay Time Range Error

Queue Full
G04 Without P Code
No Loop For M Code Except M97, M98

Invalid Tool Number
Undefined M Code
Undefined Macro Call

Range Error
H and T
Not Matched

X-Axis Disabled

Y-Axis Disabled
Z-Axis Disabled
A-Axis Disabled

Must put subprogram number in \mathbf{P} code.

Check that a subroutine is in memory or that a macro is defined.

The \mathbf{P} code must be the name of a program stored in memory without a decimal point for M98 and must be a valid \mathbf{N} number for M99.
X-axis will exceed stored stroke limits. This is a parameter in negative direction and is machine zero in the positive direction. This will only occur during the operation of a user's program.
same as 316 .
same as 316 .
Not normally possible with A -axis.
Must have a valid \mathbf{F} code for interpolation functions.
A fault turned off the servos automatically; occurs in debug mode only.
Add an M99 code to the end of program called as a subroutine.
P code in G04 is greater than or equal to 1000 seconds (over 999999 milliseconds).

Control problem; call your dealer.
Put a Pn.n for seconds or a Pn for milliseconds.
L code not used here. Remove L Code.

Tool number must be between 1 and the value in Parameter 65 .
That \mathbf{M} code is not defined and is not a macro call.
Macro name 090nn not in memory. A macro call definition is in parameters and was accessed by user program but that macro was not loaded into memory.

Number too large.
This alarm is generated when Setting 15 is turned $O N$ and an \mathbf{H} code number in a running program does not match the tool number in the spindle. Correct the Hn codes, select the right tool, or turn off Setting 15.

Parameters have disabled this axis. Not normally possible in VF Series CNC Mill.
same as 333 .
same as 333 .
An attempt was made to program the A -axis while it was disabled (DISABLED bit in Parameter 43 set to 1).

Line Referenced By
P, Not Found
Invalid IJK and XYZ in G02 or G03

Multiple Codes

Cutter Comp Begin
With G02 or G03

Cutter Comp End
With G02 or G03

Cutter Comp Path
Too Small
Display Queue
Record Full
Cutter Comp With
G18 and G19

Diff Step Ratio
On G17 Plane
Diff Step Ratio
On G18 Plane

Diff Step Ratio On G19 Plane

Motion Not Allowed In G93 Mode

Prog Stop W/O
Cancel Cutter Comp
Cutter Comp Look
Ahead Error
Invalid P Code

Aux Axis Power Off

Aux Axis No Home

Aux Axis Disconnected

Aux Axis Position Mismatch

Subprogram is not in memory, or \mathbf{P} code is incorrect.

There is a problem with circle definition; check your geometry.

Only one M, X, Y, Z, A, Q, etc. allowed in any block or two \mathbf{G} codes in the same group.

Select cutter compensation earlier. Cutter comp. must begin on a linear move.

Disable cutter comp later.

Geometry not possible. Check your geometry.

A block exists that is too long for displaying queue. Shorten title block.

Cutter comp only allowed in XY plane (G17).

Parameters 5 and 19 must be same value.

Parameters 5 and 33 must be same value.

Parameters 19 and 33 must be same value.

This alarm is generated if the mill is in Inverse Time Feed mode, and a G12, G13, G70, G71, G72, G150, or any Group 9 motion command is issued.

Cutter compensation has been cancelled without an exit move. Potential damage to part.

There are too many non-movement blocks between motions when cutter comp is being used. Remove some intervening blocks.

In a block with G103 (Block Lookahead Limit), a value between 0 and 15 must be used for the P code.

Aux B, C, U, V, or W axis indicate servo off. Check auxiliary axes. Status from control was OFF.

A ZERO RET has not been done yet on the aux axes. Check auxiliary axes. Status from control was LOSS.

Aux axes not responding. Check auxiliary axes and RS-232 connections.

Mismatch between machine and aux axes position. Check aux axes and interfaces. Make sure no manual inputs occur to aux axes.

Aux Axis Travel Limit
Aux Axis Disabled
Multiple Aux Axis
Invalid I, J, or K In G12 or G13

Tool Changer Disabled
Gear Change Disabled
Tool Usage Alarm

Coolant Locked Off
No Circ Interp
Aux Axis
Cutter Comp
Interference
Groove Too Small

Tool Too Big
Pocket Definition
Error
Invalid I, J, K, OR Q
Tool Change In Canned Cycle

Invalid Code in DNC

Missing XYZA in G31 or G36

Missing Z or H in G37

No Cutter Comp In Skip
No Skip in Graph/Sim
Skip Signal Found

Skip Signal Not Found

X, Y, A, or G49
Not Allowed in G37

Aux axes are attempting to travel past their limits.
Aux axes are disabled.
Can only move one auxiliary axis at a time.
Check your geometry.

Check Parameter 57. Not a normal condition for VF Series CNC Mill.
Check Parameter 57. Not a normal condition for VF Series CNC Mill.
Tool life limit was reached. To continue, reset the usage count in the Current Commands display and press RESET.

Override is off and program tried to turn on coolant.
Only rapid or feed is allowed with aux axes.

G01 cannot be done with tool size.

Tool too big to enter cut.
Use a smaller tool for cut.
Check geometry for G150.

Check G150.
Tool change not allowed while canned cycle is active.

A code found in a DNC program could not be interpreted because of restrictions to DNC.

G31 skip function requires an $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$, or \mathbf{A} move.

G37 automatic tool length measurement function requires \mathbf{H} code, \mathbf{Z} value, and tool offset enabled. X, Y, and \mathbf{A} values not allowed.

Skip G31 and G37 functions cannot be used with cutter compensation. Graphics mode cannot simulate skip function.

Skip signal check code was included but skip was found when it was not expected.

Skip signal check code was included but skip was not found when it was expected.

G37 may only specify Z-axis and must have tool offset defined.

G43 or G44 Not Allowed in G36 or G136

D Code Required in G35

Inch Is Not Selected

Metric Is Not Selected

Invalid L, P, or R
Code In G10

Invalid Address Format

Cutter Comp Not Allowed With G103

Cutter Comp Not
Allowed With G10

G17, G18, G19
Illegal in G68

No Spindle Speed

Feature Disabled

B Axis Disabled

Invalid Motion In G74 or G84

B Over Travel Range

No G107 Rotary Axis Specified

Invalid G107 Rotary Axis Specified

Aux Axis In G93 Block

Aux Axis Servo Off

RS-232 Too Many Progs

RS-232 No Program Name

RS-232 IIlegal Prog Name

Auto work offset probing must be done without tool offset.

A Dnn code is required in G35 in order to store the measured tool diameter.

G20 was specified but settings have selected metric input.
G21 was specified but settings have selected inches.

G10 was used to changes offsets but \mathbf{L}, \mathbf{P}, or \mathbf{R} code is missing or invalid.

An address A...Z was used improperly.

If block buffering has been limited, Cutter comp cannot be used.

Coordinates cannot be altered while cutter comp is active. Move G10 outside of cutter comp enablement.

Planes of rotation cannot be changed while rotation is enabled.
\mathbf{S} code has not been encountered. Add an \mathbf{S} code.

An attempt was made to use a control feature not enabled by a parameter bit. Set the parameter bit to 1 .

Same as 336.

Rigid Tapping can only be in the Z minus G74 or G84 direction. Make sure that the distance from the initial position to the commanded Z depth is in the minus direction.

Same as 316.

A rotary axis must be specified in order to perform cylindrical mapping (G107).

The rotary axis specified is not a valid axis, or has been disabled

This alarm is generated if a G-code block specifies any form of interpolated motion that involves BOTH one or more of the regular axes (X, Y, Z, A, B, etc...) AND one or more of the auxiliary axes (C, U, V, W).

Aux. axis servo shut off due to a fault.
Cannot have more than 200 programs in memory.

Need name in programs when receiving ALL; otherwise has no way to store them.

Check files being loaded. Program name must be Onnnn and must be at beginning of a block.
406
407
408 RS-232 Number Range Error

Floppy Unexpected End of Input

Floppy No Prog Name
RS-232 Missing Code

RS-232 Invalid Code

RS-232 Invalid N Code

RS-232 Invalid V Code

RS-232 Empty Program
RS-232 Unexpected End of Input

RS-232 Load Insufficient Memory

RS-232 Buffer Overflow

RS-232 Overrun

RS-232 Parity Error

RS-232 Break

Invalid Function For DNC

Program Number Mismatch

Floppy Illegal Prog Name

A receive found bad data. Check your program. The program will be stored but the bad data is turned into a comment.

Check your program. The program will be stored but the bad data is turned into a comment.

Check your program. The program will be stored but the bad data is turned into a comment.

Bad Parameter or Setting data. User was loading settings or parameters and something was wrong with the data.

Bad parameter or setting data. User was loading settings or parameters and something was wrong with the data.

Check your program. Between \% and \% there was no program found.
Check Your Program. An ASCII EOF code was found in the input data before program receive was complete. This is a decimal code 26.

Program received doesn't fit. Check the space available in the LIST PROG mode and possibly delete some programs.

Data sent too fast to CNC. This alarm is not normally possible as this control can keep up with even 38400 bits per second.

Data sent too fast to CNC. This alarm is not normally possible as this control can keep up with as much as 38400 bits per second.

Data received by CNC has bad parity. Check parity settings, number of data bits and speed. Also check your wiring.

Data received was garbled and proper framing bits were not found. One or more characters of the data will be lost. Check parity settings, number of data bits and speed.

Break condition while receiving. The sending device set the line to a break condition. This might also be caused by a simple break in the cable.

A code found on input of a DNC program could not be interpreted.

The \mathbf{O} code in the program being loaded did not match the $\mathbf{0}$ code entered at the keyboard. Warning only.

Floppy memory was almost full when an attempt was made to read the floppy directory.

Check your program. An ASCII EOF code was found in the input data before program receive was complete. This is a decimal code 26.

Need name in programs when receiving ALL; otherwise has no way to store them.

Check files being loaded. Program must be Onnnn and must be at the beginning of a block.

433	Floppy Empty Prog Name	Check your program. Between \% and \% there was no program found.
434	Floppy Load Insufficient Memory	Program received doesn't fit. Check the space available in the LIST PROG mode and possibly delete some programs.
435	Floppy Abort	Could not read disk.
436	Floppy File Not Found	Could not find floppy file.
501	Too Many Assignments In One Block	Only one assignment " $=$ " is allowed per block. Divide block in error into multiple blocks.
502	[Or = Not First Term In Expressn	An expression element was found where it was not preceded by "[" or "=", that start expressions.
503	Illegal Macro Variable Reference	A macro variable number was used that is not supported by this control, use another variable.
504	Unbalanced Paren. In Expression	Unbalanced brackets, "[" or "]", were found in an expression. Add or delete a bracket.
505	Value Stack Error	The macro expression value stack pointer is in error. Call your dealer.
506	Operand Stack Error	The macro expression operand stack pointer is in error. Call your dealer.
507	Too Few Operands On Stack	An expression operand found too few operands on the expression stack. Call your dealer.
508	Division By Zero	A division in a macro expression attempted to divide by zero. Re-configure expression.
509	IIlegal Macro Variable Use	See "Macros" section for valid variables.
510	Illegal Operator or Function Use	See "Macros" section for valid operators.
511	Unbalanced Right Brackets	Number of right brackets not equal to the number of left brackets.
512	Illegal Assignment Use	Attempted to write to a read-only macro variable.
513	Var. Ref. Not Allowed With N Or 0	Alphabetic addresses N and O cannot be combined with macro variables. Do not declare N\#1, etc.
514	Illegal Macro Address Reference	A macro variable was used incorrectly with an alpha address. Same as 513.
515	Too Many Conditionals In a Block	Only one conditional expression is allowed in any WHILE or IF-THEN block.
516	Illegal Conditional Or No Then	A conditional expression was found outside of an IF-THEN, WHILE, or M99 block.

517	Exprsn. Not Allowed With N Or 0	A macro expression cannot be concatenated to N or O . Do not declare O[\#1], etc.
518	Illegal Macro Exprsn Reference	An alpha address with expression, such as A[\#1+\#2], evaluated incorrectly. Same as 517.
519	Term Expected	In the evaluation of a macro expression an operand was expected and not found.
520	Operator Expected	In the evaluation of a macro expression an operator was expected and not found.
521	Illegal Functional Parameter	An illegal value was passed to a function, such as SQRT[or ASIN[.
522	Illegal Assignment Var Or Value	A variable was referenced for writing. The variable referenced is read only.
523	Conditional Reqd Prior To THEN	THEN was encountered and a conditional statement was not processed in the same block.
524	END Found With No Matching DO	An END was encountered without encountering a previous matching DO. DO-END numbers must agree.
525	Var. Ref. Illegal During Movement	Variable cannot be read during axis movement.
526	Command Found On DO/END Line	A G-code command was found on a WHILE-DO or END macro block. Move the G-code to a separate block.
527	$=$ Not Expected Or THEN Required	Only one Assignment is allowed per block, or a THEN statement is missing
528	Parameter Precedes G65	On G65 lines all parameters must follow the G65 G-code. Place parameters after G65.
529	Illegal G65 Parameter	The addresses G, L, N, O, and P cannot be used to pass parameters.
530	Too Many I, J, or K's In G65	Only 10 occurrences of I, J, or K can occur in a G65 subroutine call. Reduce the I, J, or K count.
531	Macro Nesting Too Deep	Only four levels of macro nesting can occur. Reduce the amount of nested G65 calls.
532	Unknown Code In Pocket Pattern	Macro syntax is not allowed in a pocket pattern subroutine.
533	Macro Variable Undefined	A conditional expression evaluated to an UNDEFINED value, i.e. \#0. Return True or False.
534	DO Or END Already In Use	Multiple use of a DO that has not been closed by and END in the same subroutine. Use another DO number.
535	Illegal DPRNT Statement	A DPRNT statement has been formatted improperly, or DPRNT does not begin block.

alarms

536 Command Found On DPRNT Line

RS-232 Abort On DPRNT

Matching END Not Found

IIIegal Goto

Macro Syntax
Not Allowed

613 Command Not Allowed In Cutter Comp.

A G-code was included on a DPRNT block. Make two separate blocks.

While a DPRNT statement was executing, the RS-232 communications failed.

A WHILE-DO statement does not contain a matching END statement. Add the proper END statement.

Expression after "GOTO" not valid.
A section of code was interpreted by the control where macro statement syntax is not permitted.

A command (M96, for example) in the highlighted block cannot be executed while cutter comp. is invoked.

MEGHANIGAL SERVIGE

RECOMMENDED TORQUE VALUES FOR MACHINE FASTENERS

The following chart should be used as a reference guide for torquing machine fasteners where specified.

DIAMETER	TORQUE
1/4-20	$15 \mathrm{ft} . \mathrm{lb}$.
5/16-18	30 ft . lb.
3/8-16	50 ft . lb.*
M10-100	50 ft . lb.
M12-65	100 ft . lb
1/2-13	80 ft . lb.
3/4-10	275 ft . lb
1-8	450 ft . lb

* 3/8-16 SHCS used on tool release piston torqued to 35 ft . lb.

1. HEAD COVERS REMOYAL / INSTALLATION

Please read this section in its entirety before attempting to remove or replace covers.
REMOVAL -

NOTE: This procedure is for the VF-3/4. However, the procedure varies only slightly for other models.

1. Power on the Vertical Machining Center (VMC).
2. Zero return (ZERO RET) all axes, then HANDLE JOG to center X - and Y-axes under spindle.
3. Protect table surface with a piece of cardboard.
4. Loosen the four SHCS that attach top cover to side covers, and remove.
5. Loosen the six SHCS that attach rear cover to side covers, and remove.
6. Loosen the eight SHCS that attach front cover to side covers, then carefully remove front cover from the bottom until you can disconnect the tool release cable (quick disconnect).
7. Loosen the seven SHCS that attach each side cover, and remove from the top side. Jog Z-axis as necessary to make screw removal easier.

CAUTION! Be careful not to run head covers into the enclosure.

Figure 1-1. View of VF-3/4 head covers.

INSTALLATION -

1. Protect table surface with a piece of cardboard.
2. Replace each side cover from the top side with seven SHCS. Jog Z-axis as necessary to make access to screws easier.

CAUTION! Be careful not to run the head covers into the enclosure.
3. Reconnect tool release cable, if equipped, then replace front cover from the bottom and attach with eight SHCS.
4. Replace rear cover, and attach to side covers with six SHCS.
5. Replace top cover, and attach to side covers with four SHCS.

2. TOOL RELEASE PISTON (TRP) ASSEMBLY

Please read this section in its entirety before attempting to replace tool release piston assembly.

2.1 TRP Removal

NOTE: This procedure applies to machines with 40 taper spindles only. Refer to the following sections for 50 taper TRP replacement instructions.

1. If machine is equipped with Through the Spindle Coolant (TSC), place a tool holder in the spindle.
2. Remove cover panels from the headstock area in accordance with "Head Covers Removal and Installation".
3. Remove the four $3 / 8-16 \times 13 / 4$ SHCS holding the tool release piston assembly to the head casting.
4. Disconnect the air line at the lube/air panel.
5. Disconnect the clamp/unclamp cables (quick disconnect) and the assembly's solenoid wiring located on the solenoid bracket.
6. Remove the tool release air hose and precharge hose at the fitting shown in Fig. 2-2. If machine is equipped with TSC, also remove the coolant hose.
7. Remove entire tool release piston assembly.

NOTE: Steps 8 and 9 apply only to machines with TSC.
8. Remove the drain line from the seal housing.
9. Remove the seal housing from the TRP.

Figure 2-1. Spindle and headstock area shown with covers removed. VF-0 will have no transmission.
mechanical service

Figure 2-2. Tool release piston with solenoid valve.

Figure 2-3. Mounting location for tool release piston assembly

2.2 TRP Installation

1. Ensure drive belt has been properly replaced as described in "Belt Assembly" section.
2. Verify spindle sweep adjustment is correct (as shown in "Spindle Assembly" section) before proceeding. If not correct, re-shim as necessary.
3. Reinstall tool release piston assembly loosely if the machine is equipped with TSC. Otherwise tighten the four mounting bolts securely.
4. Reconnect the air hoses at the applicable fittings on the tool release piston assembly.
5. If machine is equipped with TSC, install the coolant hose ($3 / 8^{\prime \prime}$ diameter $\times 8$ " long plastic tubing) and precharge line.

NOTE: VF-0/0E uses $3 / 8^{\prime \prime}$ diameter $\times 10$ " long plastic tubing.
6. Reconnect the clamp/unclamp cables to the sides of the solenoid bracket.

NOTE: Steps 7 and 8 apply only to machines with TSC.
7. Connect the $5 / 32$ " drain line to the seal housing and install the seal housing on the TRP (use Loctite on the screws). The drain line connector should point toward the rear of the machine (round pistons can be rotated by hand to align the fitting).

NOTE: The drain line must run straight through the cable tie loop on the transmission, and must not interfere with the pulley or belts. On VF-O/OE machines, the drain line must go straight down through the cable clamp on the bracket.
8. Apply precharge pressure several times to allow the seal to center itself with the drawbar. While holding down precharge, tighten the bolts.
9. Adjust the clamp/unclamp switches in accordance with the appropriate section.
10. Replace the head covers.

2.3 Setting Pre-Gharge

NOTE: This procedure does not apply to machines equipped with a 50 taper spindle.
NOTE: Do not perform this procedure on machines equipped with Through the Spindle Coolant (TSC). It will damage the machine. Refer to the "TSC Adjustments" section and perform those adjustments.

1. Remove the cover panels in accordance with "Head Covers Removal and Installation". It will not be necessary to remove the rear or left side panels for this operation.
2. Turn the air pressure regulator down to zero (0). The knob must be pulled out to unlock before adjusting.

NOTE: At " 0 " pressure on the pre-charge regulator, the adjustment knob is out as far as it will turn.

Figure 2-4. Air pressure regulator adjustment knob.
3. Ensure Parameter 149, PRE-CHARGE DELAY, is set to 200. If not, set it at this time.
4. Execute a tool change. A banging noise will be heard as the tool release piston contacts the drawbar.
5. Turn the air pressure regulator $1 / 2$ turn in. Execute a tool change and listen for the noise described previously. If it is heard, repeat this step until no noise is heard. There should be no noise with or without a tool in the spindle.

CAUTION! Only increase the pressure to the point where tool changes become obviously quiet. Any further pressure increases are not beneficial. Excessive pressure to the pre-charge system will cause damage to the tool changer and tooling in the machine.

2.4 TRP Removal - 50 Taper

1. Remove cover panels from the headstock area in accordance with "Head Covers Removal and Installation".
2. Remove the four SHCS holding the tool release piston assembly to the head casting. Make sure to keep all the washers and shims.
3. Disconnect the air line at the lube/air panel.
4. Disconnect the clamp/unclamp cables (quick disconnect) and the assembly's solenoid wiring located on the solenoid bracket.
5. Remove the tool release air hose.
6. Remove entire tool release piston assembly.

2.5 TRP Installation - 50 Taper

1. Set the main air regulator to 85 psi .
2. Install five (5) 0.020 " shim washers on the fork. Place two (2) 0.010 " and two (2) 0.015 " shim washers on the TRP spacers. Place one (1) 0.093" nylon washer on top of the other shims.
3. Mount the tool release piston.
4. Place a tool holder in the spindle.
5. Measure the tool flange gap. This is the distance between the flange of tool holder and the face of the spindle shaft (see figure). This dimension will be used to calculate the tool push-out.

6. Calculate the tool push-out:

The standard tool push-out is 5.696 inches. If the tool flange gap measured in the previous step is greater than $0.150^{\prime \prime}$, subtract the difference from 5.696. If the tool flange gap is less than 0.150 ", add the difference to 5.696 . This is the calculated value of tool push-out.

For example, if the tool flange gap is measured as $0.130^{\prime \prime}$, the difference would be $0.020^{\prime \prime}$. Adding $0.020^{\prime \prime}$ to 5.696 , the tool push-out would be 5.716 ".
7. Remove the tool holder from the spindle.

8. Measure the tool push-out:

Press and hold the TOOL RELEASE button. Measure the distance from the face of the spindle shaft to the center of the drawbar, where the top of the pull studs hits (see figure). This is the measured value of tool push-out.

Figure 2-5. View of 50 taper spindle, showing the tool flange gap and tool push-out.

9. Set the tool push-out:

Compare the measured value of tool push-out with the calculated value.
> If the measured value of the tool push-out is GREATER than the calculated value, REMOVE the difference in shims from the TRP fork. Remove half this number of shims from the TRP spacers to keep the upper and lower TRP gaps equal.
> If the measured value of tool push-out is LESS than the calculated value, ADD the difference in shims in the TRP fork. Add half this number of shims to the TRP spacers to keep the upper and lower TRP gaps equal.

Figure 2-6. View of tool release piston for 50 taper spindle, showing shim placement.
10. Remove the shoulder bolts one at a time, lubricate them with lithium grease, and replace them with blue Loctite on the threads.
11. Refer to the "Adjustment of Switches - 50 Taper Option" section under "Tool Clamp/Unclamp Switch Adjustment" and set the switches.

3. BELT ASSEMBLY

Please read this section in its entirety before attempting to replace the drive belt.

3.1 Belt Removal

NOTE: FOR EASIER REMOVAL, PLACE TRANSMISSION IN HIGH GEAR BEFORE BEGINNING.

1. Remove cover panels from headstock area in accordance with "Head Covers Removal and Installation".

Figure 3-1. Spindle head casting disconnect points.
2. Remove tool release piston assembly in accordance with "Tool Release Piston Assembly Removal".
3. For all VMC's except VF-0, remove the six SHCS holding the transmission to the head casting and pull the transmission forward enough ($1 / 2^{\prime \prime}$ to $3 / 4$ " max.) to allow the drive belt to be pulled upward over the spindle pulley.
4. For the VF-O, remove the four SHCS holding the mounting plate to the spindle head casting. Slide the assembly forward enough to allow the drive belt to be pulled up over the spindle pulley.

Figure 3-2. Head casting area showing belt location.
5. Remove the inspection cover from the bottom of the spindle head casting and carefully slide the drive belt between the sump tank and the web in the casting.
6. First, pull the belt up over the spindle pulley, then push the other end down to clear the shifter and pull out.

NOTE: DO NOT bend or kink the belt in any way; damage to the fibers in the belt may result, and the belt will fail soon after installation.

3.2 Belt Installation

1. For all VMC's except VF-0, slide the replacement belt(s) under the sump tank and onto the pulley.

NOTE: DO NOT wrap the belts over the pulley. The pulley can be rather sharp, and may cut the belts. DO NOT bend or kink the belt in any way; damage to the fibers in the belt may result, and the belt will fail soon after installation.
2. Ensuring the belt is properly seated, push the transmission back, tightening the belt. Pull belt forward from rear of head casting. Pull belt over spindle pulley.
3. Tighten the drive belt in accordance with the following section.
4. Set the spindle orientation in accordance with appropriate section.

NOTE: The following step is necessary only if the spindle or transmission was exchanged prior to belt replacement
5. Double-check the spindle sweep to assure that nothing has moved during the previous steps. If sweep is within tolerance, continue; if not, sweep must be readjusted.

NOTE: Drive belt tension must be adjusted after every installation.

3.3 TEnsion Adjustment

NOTE: The drive belt's tension should be adjusted after every service on the transmission or spindle of the machine.

1. Turn the machine ON. Jog the spindle head down to a level that will allow you to work on the drive belt comfortably.
2. Remove the cover panels from the head stock area as shown in "Head Covers Removal" section.
3. Remove the tool release piston assembly in accordance with appropriate section.

FOR THE VF-1 THROUGH 9

4. Loosen the six SHCS holding the transmission to the spindle head casting.

NOTE: Ensure the transmission is broken free by moving it slightly by hand.
5. Set the belt tension tool in place as shown in Figure 3-3. Mount it to the head casting by inserting the two SHCS into the two front TRP mounting holes. Tighten the SHCS finger tight.
6. Turn the handle until the tool is flat against the transmission casting.

NOTE: Ensure the transmission is straight, and not cocked, before tensioning belt.
7. Turn the handle until the edge of the tool's plunger and the outer tube are flush (see Figure 3-3). This will set the belt at the proper tension.

NOTE: A belt that is correctly tensioned will whine slightly, and requires approximately 12 hours of break-in time.
8. Check if the belt is too loose or too tight. If the belt is set too tight, the belt will whine excessively when the assembly is at speed; and if it is set too loose, it will vibrate during accelerations and decelerations.
9. With the tool still in place, tighten the six SHCS holding the transmission to the spindle head casting.
10. Loosen the two SHCS and remove the belt tension tool.

Figure 3-3. Belt tension tool.

FOR THE VF-0:

4. Loosen the four SHCS holding the motor mounting plate to the head casting.

NOTE: Ensure the motor is broken free by moving it slightly by hand.
5. Set the belt tension tool in place as shown in Figure 3-3. Mount it to the head casting by inserting the two SHCS into the two front TRP mounting holes. Tighten the SHCS finger tight.
6. Turn the handle until the tool is flat against the motor mounting plate.

NOTE: Ensure the motor is straight, and not cocked, before tensioning belt.
7. Turn the handle until the edge of the tool's plunger and the outer tube are flush (see Figure 3-3), and then $1 / 2$ turn more. This will set the belt at the proper tension.

NOTE: A belt that is correctly tensioned will whine slightly, and requires approximately 12 hours of break-in time.
8. Check if the belt is too loose or too tight. If the belt is set too tight, the belt will whine excessively when the assembly is at speed; and if it is set too loose, it will vibrate during accelerations and decelerations.
9. With the tool still in place, tighten the four SHCS holding the mounting plate to the head casting.
10. Loosen the two SHCS and remove the belt tension tool.

4. SPINDLE ASSEMBLY

Please read this section in its entirety before attempting to replace spindle.

Abstract

IMPORTANT! The current pulley is shrink-fitted onto the spindle and is not field-serviceable. It is identified by two threaded holes on top of the spindle pulley. Should any attempt to remove the pulley damage the spindle or its components, the service warranty will be voided.

NOTE: The drive belt's tension should be adjusted after every service on the transmission or spindle of the machine.

4.1 Spindle Gartridge Removal

1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the spindle. Place the cardboard on the mill table to protect the surface.
2. Remove cover panels from head stock area as described in "Head Covers Removal" section.
3. Remove the tool release piston assembly in accordance with appropriate section.
4. Remove the spindle drive belt from the spindle pulley as shown in previous section. It is not possible to completely remove the belt at this time.
5. First disconnect the oil line from the fitting at the oil injection cover, then remove the brass fitting.

> NOTE: When replacing a new design spindle in any vertical machine, it is important to note that the cavity between the housing and the spindle cartridge will be filled with either oil or grease. An oil filled spindle is identified by the oil fill hole to the left side of the spindle head near the spindle bore as viewed from the top.
6. Ensure oil plug is inserted into oil injection port of spindle before removing spindle or oil may spill into the spindle cartridge.
7. With the $5 / 16^{\prime \prime}$ hex wrench, loosen approximately two turns the six SHCS holding the spindle to the underside of the head casting.
8. Place the block of wood (minimum 6 " thick) on the table directly under the spindle.

Figure 4-1. Position wood block under spindle.
9. At the panel, go to the JOG mode and choose Z-axis. Slowly jog in the negative (-) direction until the spindle rests on the block, then remove the screws that were previously loosened (step 7).
10. Jog Z-axis in the positive (+) direction until spindle is half way out of the head casting.
11. Grasp spindle with one hand and continue to jog in Z in the positive (+) direction until it is completely free of the casting.

4.2 Spindle Gartridge Installation

Figure 4-2. Spindle cartridge.

1. Thoroughly clean all mating surfaces of both the cartridge and the head casting, lightly stone if necessary to remove burrs or high spots.
2. Place spindle on wood block making sure both spindle dogs contact the block. Align the two 10-32 holes located on the spindle lock so they are approximately 90 degrees from the front of the spindle on the right side.

Figure 4-3. Underside view of spindle cartridge.
3. Slowly jog the Z-axis in the negative (-) direction until the top portion of spindle is inside of head casting. At this point, align spindle to spindle bore. While performing this operation, you must make sure the spindle cartridge is straight to the spindle bore.
4. If the spindle moves to one side, use a rubber mallet and/or jog in the X or Y directions to straighten it. The spindle must go in easy. If it does not, check your alignment. Do not force it!
5. Install the six SHCS and tighten down completely.
6. Reattach the brass fitting to the oil injection cover and connect the oil line to the fitting. CAUTION! Do not overtighten the fittings when replacing on the oil injection cover. Overtightening may result in damage to the spindle cartridge.

NOTE: If replacing copper tubing to spindle, thoroughly clean out with filtered air.
7. Fill the cavity between the housing and the spindle cartridge with oil. The oil fill hole is to the left side of the spindle head near the spindle bore, as viewed from the top. WARNING! Never pour oil into the spindle housing.
8. Reinstall the drive belt and adjust the tension as needed.
9. Reinstall the tool release piston assembly.
10. Check the spindle sweep, as described later in this section. Check the clamp/unclamp switch adjustment.

NOTE: Refer to the appropriate sections and check the spindle orientation and ATC alignment.

4.3 Drawbar Replagement

REMOVAL -

1. Place a tool holder with no cutter in the spindle.
2. Remove head cover panels as shown in "Head Covers Removal'.
3. Remove the tool release piston in accordance with appropriate section.
4. Remove the snap ring from the top of the spindle shaft.
5. Reinstall the tool release piston.
6. Remove the tool holder from the spindle.
7. Remove the spindle, as described earlier in this section.
8. Remove the drawbar from the spindle assembly.

INSTALLATION -

9. Thoroughly coat the replacement drawbar with grease, including the end of the shaft where the four holding balls are located.
10. If machine is equipped with Through the Spindle Coolant option, grease the 0 -rings.
11. Insert four new balls in the replacement drawbar and insert into the spindle shaft. Be sure that as the shaft is installed, the balls do not fall out of the bores in the drawbar.

CAUTION! Insert the drawbar gently so the O-rings are not damaged. DO NOT use a hammer to force it.

NOTE: Carefully inspect the spindle shaft for galling or burrs inside the spindle shaft where the end of the drawbar rides. If it is damaged, the spindle must be replaced.
12. Refer to appropriate section, and install the spindle cartridge. The tool release piston will have to be reinstalled at this time.
13. Install a tool holder with no cutter into the spindle taper.
14. Remove the tool release piston.
15. Install the snap ring on the spindle shaft.
16. Reinstall the tool release piston.
17. Finish installation of the spindle, beginning with "Spindle sweep adjustment".
18. Set the drawbar height, and clamp and unclamp switches as described in the following section.

CAUTION! Step 19 must be followed or damage to the ATC will result.
19. Refer to "Spindle Orientation" and set the spindle orientation.
20. Reinstall the head covers.
21. Test-run the machine and perform the necessary ATC adjustments in the "Automatic Tool Changer" section.

4.4 Spindle Sweep Adjustment

NOTE: The machine must be properly leveled for the spindle sweep adjustment to be accurate.

1. To check spindle sweep, place a . 0005 indicator on a suitable holder, place on spindle nose and jog the Z-axis in the negative (-) direction enough so that you can adjust the indicator to sweep a 5 " radius from the center of X and Y axes' travels. Slowly jog Z-axis in the negative (-) direction to zero out indicator.
2. Establish reference zero at rear of the table. Sweep the three remaining points (left, front, and right) and record the reading.

Figure 4-4. Spindle sweep area.
3. Shim the spindle if necessary to correct the spindle sweep to specifications.
4. Recheck sweep. It must be within .0005 in both X / Z and Y / Z planes, as stated in the inspection report supplied with the VMC.
5. Replace the Tool Release Piston Assembly in accordance with the "Tool Release Piston Assembly Installation" and "Setting Pre-Charge" sections.

5. TOOL GLAMPIUNGLAMP SWITCH ADJUSTMENT

Please read this section in its entirety before adjusting clamp/unclamp switches or setting drawbar height.

TOOLS REQUIRED
\checkmark Machined aluminum block (2" x 4" x 4")
$\checkmark \quad 6 \mathrm{fl}$ flexible ruler or .020 " shim
$\checkmark \quad 1$ diameter pipe (approx. 1' long)

NOTE: If machine is equipped with a 50 Taper spindle, skip to Section 5.5.

5.1 Tool Glamp/Unclamp Switch Adjustment - Initial Preparation

1. Remove cover panels, as described in "Head Covers Removal".
2. Place a sheet of paper under the spindle for table protection, then place a machined block of aluminum (approximately 2 " $\times 4$ " $\times 4$ ") on the paper.

Figure 5-1. Placement of aluminum block under spindle.
3. Power on the VMC.
4. Insert a tool holder WITHOUT ANY TYPE OF CUTTER into the spindle taper.
5. Go to the HANDLE JOG mode. Choose Z-axis and set jog increments to . 01 .
6. Jog Z-axis in the negative (-) direction until the tool holder is approximately .03 from the block. At this point, stop jogging the spindle and push the TOOL RELEASE button (top left). You will notice that the tool holder comes out of the taper.

NOTE: The clearance from the tool holder to the block should be zero (0).
7. To accomplish this, set the jog increments to .001 and jog in the negative $(-) Z$ direction a few increments of the hand wheel at a time. Between these moves, push the tool release button and feel for movement by placing your finger between the tool holder and the spindle. Do this until no movement is felt. You are now at zero (0).

CAUTION! Do not jog too far in the negative (-) direction or else it will cause an overcurrent in the Z -axis.

5.2 Setting Drawbar Heicht

1. Press MDI and turn hand wheel to zero (0).
2. Press HANDLE JOG button and set increments to .01. Jog the Z-axis in the positive (+) direction $0.100^{\prime \prime}$.
3. Press and hold the TOOL RELEASE button, grasp the block and try to move it. The block should be tight at .100 and loose at .110. If block moves at .100, jog the Z-axis in the negative (-) direction one increment at a time. Press the TOOL RELEASE button and check for movement between increments until block is tight.

NOTE: The increments jogged in the Z negative (-) direction are the amount of shim washers that must be added to the tool release bolt (or coolant tip for TSC). Refer to "Shim Washers" section.
4. If the block is tight at . 110, move the Z-axis in the positive (+) direction one increment at a time. Press the TOOL RELEASE button and check movement between increments until block is loose.

The increments jogged in the Z positive (+) direction are the amount of shim washers that must be removed. (Refer to "Shim Washers" section).

5.3 Shim Washers

1. To add or subtract shim washers, remove tool release piston assembly ("Tool Release Piston" section) from head casting.

NOTE: Shims may need to be added or removed when spindle cartridge, tool release piston assembly, or drawbar is replaced. If none have been replaced, skip this section.

Figure 5-2. Tool release piston assembly (TSC shown).
2. Remove tool release bolt. If machine is equipped with TSC, loosen the three set screws and remove the TSC coolant tip.
3. Add or subtract required shim washers (See previous section for correct amount to add or remove).
4. Before installing tool release bolt, put a drop of serviceable (blue) Loctite $®_{\text {R }}$ on the threads and install. If replacing TSC coolant tip, put a drop of Loctite $®$ on the threads of the three set screws before installing.
5. Install tool release piston assembly in accordance with the "Tool Release Piston - Installation" section and recheck settings. If within specifications, continue; if not, readjust.

5.4 Adjustment of Switches

LOWER (UNCLAMP) SWITCH -

1. Push the PARAM/DGNOS button (top center) twice. You are now in diagnostics mode. Look at the bottom left corner of the page and you should see DB OPN 0 (tool unclamped) and directly under that, DB CLS 1 (tool clamped). If not, push PAGE DOWN until you do. A "1" means that particular switch is being tripped. A "0" means it is not being tripped.
2. With the tool holder resting on the block and set at zero ("Setting Drawbar Height" section), jog Z-axis in the positive (+) direction . 06 .
3. Press the tool release button and hold it. DB OPN should change from a "0" to a "1". If it does not, slightly loosen the two $1 / 4-20 \times 1 / 2^{\prime \prime}$ SHCS holding the unclamp switch bracket (switch on right) to the tool release assembly.

Figure 5-3. Tool release piston assembly.
4. While activating tool release, tap unclamp switch assembly towards spring retainer until it just trips. Switch must trip at $.060+/-.010$.

this adjustment is very important for proper tool changer operation, and must BE PROPERLY SET!

5. Check the adjustment by setting the jog handle at . 06 and activating the tool release. The DB OPN signal should be a "1".

If the adjustment is not correct, adjust until it is within specifications. You may have to readjust the switch several times.

UPPER (CLAMP) SWITCH -

CAUTION! Remove the tool holder from the spindle before performing the upper (CLAMP) switch adjustment. Failure to remove it could result in damage to the tool holder, the mill table, or cause severe personal injury.
6. Place a shim (approximately . 020 thick), or the flexible ruler, between the tool release piston adjustment bolt and the drawbar.

Figure 5-4. Placement of shim before checking switch adjustment.
7. Move the tool release piston down so the shim is pressed against the drawbar. This can be done in one of the two following ways:
$>$ Using the pipe as a lever, push down on the piston until it contacts the drawbar and the shim is held in place. For the VF-0: wedge a large, flat-tip screwdriver under the cooling fins of the motor and push the piston down.

IMPORTANT! Use extreme care when performing this procedure on TSC equipped machines, or the pipe fitting will break off the top of the TRP shaft.
> If machine is equipped with the "macros" option: set macro variable \#1120 to 1. This will energize the pre-charge solenoid, bringing the TRP in contact with the drawbar (no prying is necessary). Press RESET to de-energize the solenoid.
8. While the tool release piston is down, move the switch bracket all the way in and check for "Tool Unclmp" status on the CRT (DB OPN=0, $\mathrm{DB} \mathrm{CLS}=0$), and tighten the bracket bolts. If not, move the switch out until "Tool Unclmp" status appears on the CRT and then tighten the bolts.
9. Check the switch several times. This is done by by moving the piston up and down to ensure that the "Tool UncImp" status appears when the piston makes contact with the shim and drawbar, and does not appear when it is in the retracted position. "Tool Unclmp" status appears on the CRT display as (DB OPN=0, DB CLS=0).

Figure 5-5. Push piston down to hold shim in place.

5.5 Adjustment of Switches - 50 Taper Option

Setting Upper (CLAMP) Switch -

1. Move the switch in slowly until it trips, then push it a little farther.
2. Tighten down the mounting SHCS.
3. Check the switch by pressing the TOOL RELEASE button a few times to activate the TRP. The discrete input "DB CLS" should always turn on (1) when the TRP is completely retracted.

Setting Lower (UNCLAMP) Switch -

1. Using the air pressure regulator on the back of the machine, adjust the pressure until the tool push-out is $0.020-0.030$ " (this should be at approximately 75 psi).
2. Move the switch in until it just trips. The discrete input "DB OPN" should always turn on (1) when the drawbar is completely compressed (down).
3. Tighten down the SHCS on the switch.
4. Check the switch by pressing the TOOL RELEASE button a few times to activate the TRP.
5. Using the air pressure regulator on the back of the machine, adjust the pressure to 70 psi . Activate the TRP a few times. The discrete input "DB OPN" should remain " 0 ". If not, repeat the procedure.

6. SPINDLE ORIENTATION

Please read this section in its entirety before attempting to orient the spindle.

NOTE: If machine is equipped with a vector drive, skip to the next section.

6.1 Orientation - Spindle Drive with Shot Pin Orientation

1. Remove cover panels from the head stock area ("Head Covers Removal"), and tool changer front cover.
2. In MDI mode, press the ORIENT SPINDLE button.
3. Loosen the four $1 / 4$ "-20 bolts on the orientation ring. Remove two of these bolts and insert them into the two threaded holes on the ring. Evenly tighten these two bolts until the taper lock is broken.
4. Remove the two $1 / 4 "-20$ bolts and place them into their original holes. Tighten them finger tight, then $1 / 2$ of a turn more. Ensure that the orientation ring is snug, but not tight.

NOTE: If replacing the orientation ring, clean the shaft and the ring bore thoroughly with alcohol. They must be free of grease and oil.
5. Set up a magnetic base with a $0.0005^{\prime \prime}$ indicator on the table. Zero the indicator on the spindle dog in the X- plane.
6. Jog the indicator across the spindle dogs and note the indicator reading. The spindle dogs should be parallel to the X axis within 0.030 ".

Figure 6-1. Top view of spindle orientation components.

Figure 6-2. VF-0 motor with orient ring location.
7. There is a 0.015 " -0.030 " backlash in the spindle system when it is oriented. Be certain to compensate for this backlash when performing the adjustment.
8. Using a $5 / 8$ " open end wrench, rotate the spindle until the appropriate alignment is attained. If the spindle is very difficult to rotate, STOP and return to Step 4.
9. Disconnect the main air line to the machine.
10. Manually turn the orientation ring and push the shot pin until it drops into the orient ring detent.
11. Tighten the orient screws (evenly) to 15 ft -lbs. Verify that spindle alignment has not changed.

NOTE: It is vital that the orient screws be tightened evenly. If not, the top of the orientation ring will run out and the ring will slip.

NOTE: Ensure the orientation ring has an adequate layer of grease around the circumference before starting operation.
12. Make at least 50 tool changes to test the spindle orientation.

6.2 Orientation - Vector Diive

1. Place the machine in low gear.
2. Adjust Parameter 257, "SPINDL ORIENT OFSET", until the spindle dogs are parallel to the X-axis. Ensure that the dogs are within $0.030^{\prime \prime}$ using a dial indicator.
3. Add 5 degrees of offset (111 encoder steps) to Parameter 257 to match the tool changer arm offset.

7. SETTING PARAMETER 64 (TOOL CHANGE OFFSET)

Please read this section in its entirety before attempting to set Parameter 64.

NOTE: Parameter 7 must be "unlocked" before setting Parameter 64.

1. WITHOUT a tool in the spindle taper, initiate a tool change and stop the tool changer using the EMERGENCY STOP button (when the Z-axis moves above the carousel, but before the carousel rotates). Insert a tool holder into the pocket facing the spindle.
2. Using a . 0005 indicator and suitable 18" mag base, zero off of bottom left edge "A" of tool holder (looking directly into pocket). Move indicator to bottom right edge "B" of tool holder. Any difference between these edges should be equally divided. For example: if a difference of . 002 from left side to right side edge, adjust indicator dial so that indicator reads .001 when it is on either edge. This gives you the tool offset reference.

Figure 7-1. Checking tool offset reference.
3. Carefully (so as not to disturb relative position) move the indicator to one side. Remove tool from the tool changer and place it in the spindle.
4. Press Z SIGL AXIS to zero return the Z-axis only.
5. Carefully (so as not to disturb relative position) place indicator under spindle and indicate on bottom left edge of the tool holder.

If spindle head is too far in the negative (-) or the positive (+) direction, go to JOG mode and choose Z-axis. Jog Z-axis in the necessary direction until it reads zero (0).
6. Push the help button twice. This will put the machine in the calculator mode.

Figure 7-2. Screen showing calculator.
7. Take the number in the Z-axis machine display (center left of page) and multiply it by Parameter 33, which is Z RATIO (STEPS/UNIT).

If Z-axis work display is negative $(-)$, add the number to the number that you calculated to Parameter 64. If the number is positive (+), subtract it from Parameter 64.
8. To insert the calculated new number, place the cursor at Parameter 64, type in new number and push WRITE key. ZERO RET Z-axis to initialize the new Parameter 64.
9. Recheck the offset with the indicator (Steps 1-5).
10. Insert tool holder in spindle in spindle taper and initiate a tool change.

NOTE: When the Parameter 64 is changed, the tool offsets must be reset.

8. SPINDLE MOTOR \& TRANSMISSION

Please read this section in its entirety before attempting to remove or replace transmission.

NOTE: The drive belt's tension should be adjusted after every service on the transmission or spindle.

8.1 Motor Removal (VF-0)

1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the transmission. At this time, raise the Z-axis to the full up position.
2. Remove the cover panels from head stock area ("Head Stock Removal" section).
3. Remove the tool release piston assembly ("Tool Release Piston Assembly" section).
4. Press the POWER OFF button on the control panel and turn the main breaker off. If there is an external breaker box, turn it off and lock it out.
5. Disconnect the air supply from the back panel of the machine.
6. Disconnect all of the electrical and pneumatic lines from the solenoid bracket on top of the spindle motor assembly. Mark any connections that have not been previously labeled for reassembly.
7. Remove the two SHCS holding the cable carrier to the solenoid bracket and position the cable carrier so as to not interfere with removal of the motor. It may be necessary to tie the cable carrier back to the Z-axis motor to keep it in place.
8. If machine is equipped with Through the Spindle Coolant option, remove the pressure regulator and bracket from the old transmission and install them on the new transmission.

Figure 8-1. VF-0 with lifting eyeholes.
9. Remove the four SHCS and carefully lift the spindle motor assembly off the spindle head. Take care to not damage the drive pulley during removal.

NOTE: It is recommended that the HAAS Transmission Hoist be used in this operation (Refer to "Hoist Pre-Assembly", later in this section, for assembly and setup).

1. Carefully lower the motor assembly down to just above the spindle head casting, taking care not to damage the drive pulley or pinch the drive belt.
2. Place the drive belt on the motor's drive pulley and lower the motor down onto the spindle head casting.
3. Insert and tighten down the four SHCS attaching the motor to the spindle head casting. Adjust the drive belt as noted in "Belt Assembly" before tightening down completely.
4. Refer to the appropriate section and set the spindle orientation.
5. Check for proper orientation of the machine and be aware of any unusual noises or vibration that may occur because of incorrect belt tension.
6. Reattach the cable carrier to the solenoid bracket and reconnect all electrical and fluid lines. Replace any leaking or damaged lines at this time, if necessary.

NOTE: Ensure the orient ring has an adequate layer of grease around the circumference before starting operation.

8.3 Hoist Pre-Assembly

1. Attach the mast support to the support base, using the four $3 / 8-16 \times 1 \frac{1}{4}$ " SHCS, four $3 / 8^{\prime \prime}$ flat washers, four split washers, and the four 3/8-16 hex nuts. Ensure the bolts are securely tightened.
2. Attach the boom modification plates to the mast using the three $1 / 2-13 \times 4 \frac{1}{2} 2^{\prime \prime} \mathrm{HHB}$, three $1 / 2{ }^{2}$ split washers, three $1 / 2-13$ hex nuts, and the three spacers.

Figure 8-2. Support base/mast support assembly.

Figure 8-3. Exploded view of boom modification plate components.
3. Assemble the boom assembly as follows:
A. Lubricate the components of the assembly:

1) Using a grease brush, apply grease to the through-hole and the side surface of the pulley wheel.
2) Wipe a thin coat of oil on the entire cable.
3) Lubricate all clevis pins with a thin layer of grease.
4) Oil all bearings on the winch and apply grease to the gear teeth.
B. Place the pulley wheel inside the cable guide and place this subassembly into the end of the boom. Ensure the clevis pin through-hole is toward the top of the boom and the rounded end of the cable guide is toward the outside. Slide the clevis pin through the hole and fasten with the $1 / 8 " \times 1$ " cotter pin.
C. Attach the winch base to the boom with the two $3 / 8-16 \times 1$ " SHCS, two $3 / 8^{\prime \prime}$ lock washers, and the two $3 / 8$ " hex nuts. See owner's manual for mounting for left-or right-handed operation.
D. Feed the free end of the cable (without hook) between the pulley and cable guide and through the inside of the boom.

Figure 8-4. Mounting cable guide and pulley wheel to boom.
E. Attach the cable to the winch as follows:

1) FOR LEFT-HAND OPERATION -

Pass the cable under the winch drum and through the hole in the drum flange.
Form a loop of cable and securely anchor it in place using the tie-down clasp, carriage bolt, and hex nut. The cable must be underwound on the winch drum.

2) FOR RIGHT-HAND OPERATION -

Pass the cable between the frame rod and the countershaft of the winch, over the winch drum, and through the hole in the drum flange. Form a loop of cable and securely anchor it in place using the tie-down clasp, carriage bolt, and hex nut. The cable must be overwound on the winch drum.
F. Ensure all hex nuts and cap nuts are securely tightened and all cotter pins are properly bent to secure them in place. Make sure all pivots and rotation points are well-lubricated and refer to the winch owner's manual for proper lubrication before operating.
4. Place the transmission lift fixture on top of the transmission, with the rod at each end in the two lifting eyeholes of the transmission. Tighten the fixture onto the transmission by turning the handle at the end. Do not overtighten.

Figure 8-5. View of transmission lift fixture.

8.4 Transmission Removal

NOTE: This procedure is not for VF-O.

1. Ensure the VMC is ON. You will need to raise and lower the head stock to remove the transmission. At this time, raise the Z-axis to the full up position.
2. Remove the cover panels from head stock area ("Head Covers Removal" section).
3. If machine is equipped with the Through the Spindle Coolant option, remove the pressure regulator, check valve assembly, and bracket from the old transmission, so they can be installed later on new transmission.
4. Remove the tool release piston assembly ("Tool Release Piston" section).
5. Remove the six SHCS holding the transmission to the head casting. Slide the transmission forward enough to release the drive belt from the transmission and spindle pulleys.
6. Press the POWER OFF button on the control panel and turn the main breaker off. If there is an external breaker box, turn it off and lock it up.
7. Disconnect all electrical lines and air lines from the transmission solenoid bracket. Disconnect the electrical and oil lines from the oil pump. Plug the oil lines to prevent contamination. Most of the lines should be marked and identified. If not marked, do so as it is removed.

Figure 8-6. Solenoid bracket with all lines connected.
8. Remove the two SHCS holding the cable carrier to the solenoid bracket and position the cable carrier so as to not interfere with the transmission removal. It may be necessary to tie the cable carrier back to the Zaxis motor to keep it in place.
9. Remove the protective cardboard from the mill table and install the support base assembly on the table, using the four SHCS, four $1 / 2$ " flat washers, and the four T-nuts.

CAUTION! Ensure the protective rubber pads on the bottom of the mounting base are in place and in good condition, or damage to the mill table may result.

Figure 8-7. Support base/mast support assembly location.
10. With the boom modification plate in place, insert the mast into the mast support. Using the two clevis pins, attach the boom to the mast.

Figure 8-8. Mounting boom assembly to mast.
11. Place the hoist directly over the transmission and attach the hook to the cradle's eye bolt.

Figure 8-9. Fully assembled hoist in position
12. Raise the transmission, ensuring the hoist is being lifted in the locking position, clearing the enclosures. Swing the boom toward the front of the machine and lower onto the wood blocks.

Figure 8-10. Lifting position for VF-1 through 4.
13. For VF-1-4: Place the hoist hook in the bar's lifting eye and place the two hooks on either end of the bar into diagonally opposite lifting holes in the motor shroud. Lift just enough to ensure the hooks are seated properly, then carefully lift the motor and transmission assembly up enough to clear the VMC. Swing the boom toward the front of the machine and lower onto the wood blocks.

8.5 Transmission Installation

1. If machine is equipped with Through the Spindle Coolant option, reinstall the pressure regulator, check valve assembly, and bracket. Install two cable ties on the replacement transmission as follows:
$>$ Place one cable tie around the limit switch cable.
> Place the second cable tie through the first one, forming a loop.
> Tighten the first cable tie. NOTE: The loop of the second cable tie must allow the drain line to slip through.
2. Place cradle under new transmission and lift just enough to put tension on the cables.
3. Ensure new transmission is seated securely and lift. Only lift high enough to clear the enclosure and to swing into place.
4. Slowly swing boom around to center the cradle and transmission over the spindle head.

NOTE: Inspect the gearbox isolators to ensure the spacer is flush with the bushing on the underside of the housing.
5. Lower the transmission carefully to just above the spindle head. Place the drive belt onto the transmission pulley.
6. Lower the transmission into the spindle head, taking care not to crush or bind the drive belt as you lower.
7. Insert and tighten down the six SHCS attaching the transmission to the spindle head. If these screws include gearbox isolators, ensure the $3 / 8$ fender washer is NOT touching the gearbox housing.

Figure 8-11. Gearbox isolators.
Adjust the drive belt tension as noted in "Belt Assembly" section before tightening screws down completely.
8. Reattach the cable carrier to the solenoid bracket and reconnect all electrical and fluid lines. Replace any leaking lines at this time, if necessary.

NOTE: The hoist must be disassembled before removing from the mill table. Break down the hoist by removing the boom assembly, then the mast. It will not be necessary to completely break down the hoist after the first assembly.

NOTE: Ensure the positioning ring has an adequate layer of grease around the circumference before starting operation.

9. AXIS MOTOR REMOVAL / INSTALLATION

Please read this section in its entirety before attempting to remove or replace the motors.

\checkmark Z-Axis: Cylinder shaft stop (P/N 99-7562-VF-0 through 4, P/N 93-9962-VF-6 through 10)

9.1 X-Axis Моtor Removal

1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.

Figure 9-1. X-axis motor and components.
2. Move the table to the far left position. Loosen the SHCS and remove the right way cover.
3. Move the table to the far right position. Loosen the SHCS and remove the left way cover.
4. Remove the side enclosure panels.
5. On the motor housing, remove the four BHCS and remove the cover plate.
6. Loosen the SHCS on the motor coupling at the lead screw.
7. Turn the machine power OFF.
8. On the motor housing, loosen the four SHCS and remove the motor from the housing.
9. Disconnect all wiring from the motor.

INSTALLATION -

1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.

Figure 9-2. Motor coupling components.
2. Reinstall and tighten down the four SHCS that hold the motor to the housing.
3. Visually inspect the coupler flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leadscrew or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite ${ }^{\circledR}$ on the screw before inserting.)
4. Replace the cover plate and fasten with the four BHCS.
5. Move the table to the far right position. Replace the left way cover with the SHCS.
6. Move the table to the far left position. Replace the right way cover with the SHCS.
7. Reinstall the side enclosures.
8. Check for backlash in the X -axis lead screw (Troubleshooting section) or noisy operation.

9.2 Y-Axis Motor Removal

1. Turn the machine power ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
2. Move the table to the farthest forward position. Using a $5 / 32^{\prime \prime}$ hex wrench, remove the SHCS on the way cover at the rear of the saddle.
3. Slide the way cover back against the machine. Remove the two roller brackets from the base. Pull the way cover forward and off of the base.
4. If the bearings are to be serviced, move the table to the rear of its travel and remove the SHCS holding the front way covers to the saddle. Slide the way cover to the forward position.

Figure 9-3. Y-axis motor and components.

REMOVING LUBE / AIR PANEL -

5. Turn the machine off and disconnect all air lines to panel.
6. Disconnect the spindle air/lube line.
7. Using a 3/8" open-end hex wrench, disconnect the oil line connecting the base to the lubrication system panel.
8. Disconnect the two air lines from the panel (quick-disconnect fittings) by hand.
9. Disconnect the three connections labeled 'limit switches' and remove the cords from the panel.
10. Disconnect the limit switch connection and the Y-axis connection at the side of the control panel.
11. While holding the lube/air panel assembly at the bottom edge, loosen the two SHCS and remove the panel assembly.

CAUTION! On machines with only two SHCS, remove one screw at a time. Replace the screw to hold the cabinet in place before removing the other screw. Failure to do this will result in damage to the cabinet.
12. On the motor housing, remove the four and remove the cover plate.
13. Loosen the SHCS on the motor coupling at the lead screw.
14. On the motor housing, Ioosen the SHCS and remove the motor from the housing.

Figure 9-4. Lube/Air Panel.

INSTALLATION -

1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.
2. Replace and tighten down the four SHCS that hold the motor to the housing.
3. Visually inspect the flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite ${ }^{\circledR}$ on the screw before inserting.)
4. Replace the cover plate and fasten with the four BHCS.
5. Replace the lube system panel with the two SHCS that mount it.
6. Plug in the limit switch connection and Y -axis connection at the side of the control panel.
7. Reconnect the three connections labeled "limit switches" to the panel.
8. Reconnect the two air lines to the panel, and the solenoid to the front of the panel.
9. Reconnect the oil line that connects the lube system panel to the base.
10. If the front way cover was removed, slide it back into position, and replace the SHCS that holds it to the saddle.
11. Move the table to the fully forward position. Replace the rear way cover.
12. Replace the two roller brackets onto the base.
13. Slide the way cover back into place, and attach to the saddle with the SHCS.
14. Check for backlash in the Y-axis lead screw (Troubleshooting section) or noisy operation.

9.3 Z-Axis Motor Removal

CAUTION! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK BEFORE SERVICING ANY Z-AXIS COMPONENTS.

1. Turn the machine power ON. Zero return (ZERO RET) all axes and put the machine in HANDLE JOG mode.
2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head.

NOTE: If machine is equipped with a hydraulic counterbalance, remove entire spindle head cover for VF-0/OE/1/2, VCE 500/550/700/750, or right side spindle head cover for VF-3/4, VCE 1000/1250.
3. If the bearings are to be serviced, remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
4. Lower the spindle head to its lowest position.
5. If the machine is equipped with a hydraulic counterbalance, install cylinder shaft stop (See Fig. 9-6). HANDLE JOG Z-axis up until shaft stop blocks axis.
6. Disconnect the electrical power.
7. On the motor housing, loosen the four BHCS and remove the cover plate.

Figure 9-5. Z-axis motor and components.

Figure 9-6. Z-axis motor and components for machines equipped with hydraulic counterbalance.
8. Loosen the SHCS on the motor coupling at the lead screw.
9. On the motor housing, loosen the four SHCS and remove the motor from the housing.
10. Disconnect the Z-axis connection from the control panel.

INSTALLATION -

1. Slide motor into motor housing, inserting the end of the lead screw in the motor coupling.
2. Replace and tighten down the four $5 / 16-18 \times 1 \frac{114 "}{}$ SHCS that hold the motor to the housing.
3. Visually inspect the flex plates to ensure they are parallel to the coupling halves.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite $®$ on the screw before inserting.)
4. Replace the cover plate and fasten with the four BHCS.
5. Reconnect electrical power.
6. Remove shaft stop, if necessary.
7. If the front way cover was removed, slide it back into position, and replace the $10-32 \times 3 / 8$ " SHCS that holds it to the saddle.
8. Move the table to the fully forward position. Replace the rear way cover.
9. Replace the two roller brackets onto the base.
10. Slide the way cover back into place, and attach to the saddle with the $10-32 \times 3 / 8$ " SHCS.
11. Check for backlash in Z-axis lead screw (Troubleshooting section), or noisy operation.

9.4 Coupler Replacement

1. Remove the axis motor in accordance with "Axis Motor Removal/Installation" section.

NOTE: It will not be necessary at this time to completely remove the motor. Do not disconnect the electrical components.
2. Completely loosen the $10-32 \times 1 / 2$ " SHCS on the two coupling rings and remove the coupling.
3. For installation: Visually inspect the flex plates to ensure they are parallel to the coupling halves. Slide the new coupling onto the motor shaft until the coupling half is flush to the end of the shaft.

NOTE: The slot in the locking collar must be positioned 45 degrees between the bolt hole pattern of the coupler. If improperly aligned, the coupler will not have enough clamping force on the leads screw or motor shaft.

Tighten the SHCS on the motor coupling at the lead screw. (Place a drop of blue Loctite $®$ on the screw before inserting.)
5. Reinstall the axis motor.

Figure 9-7. Motor coupling.

10. LEAD SCREW REMOVAL AND INSTALLATION

Please read this section in its entirety before attempting to remove or replace the lead screws.

TOOLS REQUIRED

\checkmark Spanner wrench (32 mm or $40 / 50 \mathrm{~mm}$) $\quad \checkmark \quad 2$ x $\times 4$ " wood block (21 "- $23 \frac{1}{2}$ " long)
\checkmark Shaft lock ($\mathbf{3 2} \mathrm{mm}$ or $\mathbf{4 0} / 50 \mathrm{~mm}$) $\quad \checkmark \quad$ Torque tester
\checkmark Z-Axis: Cylinder shaft stop (P/N 99-7562-VF-0 through 4, P/N 93-9962-VF-6 through 10)

NOTE: Certain steps in the following procedures apply only to 40 and 50 mm lead screws.

10.1 X-Axis Lead Screw Removal

1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
2. Remove the side enclosures.
3. Loosen the SHCS and remove the chip tray from the mill table.
4. Jog the table to the far right position. Loosen the SHCS and remove the right way cover.
5. Jog the table to the far left position. Loosen the SHCS and remove the left way cover.
6. If applicable, remove the hard stop from the bearing housing on the lead screw.

Figure 10-1. X-axis lead screw and components.
7. Disconnect the oil line from the ball nut.
8. Loosen the $10-32 \times 1 / 2$ SHCS and remove the clamp nut on the lead screw support bearing end.

Figure 10-2. Lead screw assembly.
9. Remove the axis motor in accordance with "X-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.
10. Loosen the $10-32 \times 1 / 2$ " SHCS and remove the clamp nut on the lead screw in the motor housing.

11. For 32 mm lead screws:

> Loosen the six $1 / 4-20 \times 1$ " SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.
> Push the mill table towards the motor end until the lead screw clears the bearing support. Remove the SHCS from the ball nut and remove the lead screw by pulling from the bearing support end.

CAUTION! DO NOT PRYTHE BEARING SLEEVE AWAYFROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

For 40 and 50 mm lead screws:

> Loosen the SHCS that mount the bearing support to the saddle, and remove. Remove the pull pins from the bearing support.
> Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

INSTALLATION -

1. Center the mill table on the saddle.
2. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.
3. Insert the lead screw through the nut housing and motor housing (See Fig. 10-3), taking care not to make contact with the screw threads, which will cause possible damage.

Figure 10-3. Install lead screw from right side.

4. If $\mathbf{4 0}$ or $\mathbf{5 0} \mathbf{m m}$ lead screw:

> Mount the bearing support to the saddle with six SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
> Install the spacer ring on the motor end of the lead screw.
> Insert the $5 / 16-18 \times 3 / 4$ " (or M10 $\times 25 \mathrm{~mm}$) SHCS, attaching the ball nut to the nut housing, but do not tighten completely. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.).
$>$ Skip to Step 8 .
5. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)

Figure 10-4. Bearing sleeve mounting location.
6. Insert the six $1 / 4-20 \times 1$ " SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite ${ }^{8}$ on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
7. Move mill table as far right as possible. Insert, but DO NOT TIGHTEN, the five $1 / 4-20 \times 1^{1 "}$ (or $1 / 4-20 \times 3 / 4$) SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.)

CAUTION! Do not run mill table pads past the end of the linear guides! If this occurs, cease all operations and contact the manufacturer at once.
8. The following sequence is important to ensure proper installation of the lead screw:
> Screw the clamp nut against the bearing at the bearing support end, hand tight. Tighten the clamp nut screw.
> Tighten the clamp nut, hand tight, on the motor end.
> Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
> Place a spanner wrench on the clamp nut at the motor end of the assembly.
> Torque the clamp nut to 15 FT-LBS.
NOTE: The $40 / 50 \mathrm{~mm}$ leadscrew clamp nut should be torqued to 50 FT-LBS.
> Remove the shaft lock.
> Tighten the clamp nut screw and mark with yellow paint.
> Loosen the clamp nut screw and clamp nut at the bearing support end and re-tighten, hand tight.
$>$ Tighten the bearing support end clamp nut another $1 / 8$ turn. (If you have a torque screwdriver, torque the clamp nut to 4 IN-LBS.) Tighten the clamp nut screw and mark with yellow paint.
9. Move the mill table to the far left position (motor end). Tighten down completely the five SHCS attaching the ball nut to the nut housing.

10. For $\mathbf{4 0}$ and $\mathbf{5 0} \mathbf{~ m m}$ lead screws only:

> Move the table all the way to the right. Tighten down completely the SHCS that mount the bearing support to the saddle.
> Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then $1 / 8$ turn more (If you have a torque screwdriver, torque the clamp nut to $4 \mathrm{in}-\mathrm{lbs}$).
11. Reinstall the motor according to "Axis Motor Removal and Installation".
12. Check lead screw torque at bearing support end with torque tester. Jog the table all the way to the right. Check the lead screw torque again. It should be the same as the previous reading.
13. Reinstall the way covers and chip tray. If applicable, replace the hard stop.
14. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

10.2 Y-Axis Lead Screw Removal

1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
2. If applicable, remove the hard stop from the lead screw support bearing end of the lead screw.
3. Disconnect the oil line at the ball nut.
4. Loosen the $10-32 \times 1 / 2$ SHCS and remove the clamp nut on the lead screw bearing support end.

Figure 10-5. Y-axis lead screw and components.
5. Remove the motor in accordance with "Y-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.
6. Loosen the $10-32 \times 1 / 2^{\prime \prime}$ SHCS and remove the clamp nut on the lead screw in the motor housing.

7. For $\mathbf{3 2} \mathbf{~ m m ~ l e a d ~ s c r e w s : ~}$

$>$ Loosen the six $1 / 4-20 \times 1$ SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

CAUTION! DO NOTPRYTHE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.
> Remove the five SHCS attaching the ball nut to the nut housing.
> Hand-turn the lead screw toward the rear of the machine until the front end of the lead screw clears the bearing by approximately six inches (6 ").
> Carefully pull the lead screw forward, to the right of the support bearing, under the front way cover until the rear of the lead screw clears the nut housing. Shift the rear end of the lead screw to the right side of the nut housing and move the lead screw to the rear of the machine until it clears the front way cover. Remove lead screw from the machine.

For $\mathbf{4 0}$ and $\mathbf{5 0 ~ m m}$ lead screws:
> Loosen the SHCS that mount the bearing support to the saddle, and remove. Remove the pull pins from the bearing support.
> Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

Figure 10-6. Pull lead screw forward around bearing support,...

..push back into the machine, then pull out forward.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.
2. Slide the motor end of the lead screw under the saddle, taking care not to damage the screw threads. Position the lead screw to the right side of the nut housing and slide toward the rear of the machine as far as it will go.
3. Pull the lead screw forward until it is against the front way covers. Place the motor end of the lead screw through the nut housing and push the lead screw toward the back of the machine until the ball nut is seated in the nut housing.

4. If $\mathbf{4 0}$ or $\mathbf{5 0} \mathbf{~ m m}$ lead screw:

> Mount the bearing support to the saddle with six SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
> Install the spacer ring on the motor end of the lead screw.
> Insert the $5 / 16-18 \times 3 / 4^{\prime \prime}$ (or M10 $\times 25 \mathrm{~mm}$) SHCS, attaching the ball nut to the nut housing, but do not tighten completely. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.).
$>$ Skip to Step 8 .
5. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)
6. Insert the six $1 / 4-20 \times 1$ " SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
7. Move mill table as far forward as possible. Insert, but DO NOT TIGHTEN, the five $1 / 4-20 \times 1$ " (or $1 / 4-20$ $\times 3 / 4^{\prime \prime}$) SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite $®$ on each of the SHCS before inserting.)

CAUTION! Do not run mill table pads past the end of the linear guides! If this occurs, cease all operations and contact the manufacturer at once.
8. The following sequence is important to ensure proper installation of the lead screw:
> Screw the clamp nut against the bearing at the bearing support end, hand tight. Tighten the clamp nut screw.
> Tighten the clamp nut, hand tight, on the motor end.
> Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
> Place a spanner wrench on the clamp nut at the motor end of the assembly.
> Torque the clamp nut to 15 FT-LBS.
NOTE: The $40 / 50 \mathrm{~mm}$ leadscrew clamp nut should be torqued to 50 FT-LBS.
> Remove the shaft lock.
> Tighten the clamp nut screw and mark with yellow paint.
> Loosen the clamp nut screw and clamp nut at the bearing support end and re-tighten, hand tight.
$>$ Tighten the bearing support end clamp nut another $1 / 8$ turn. (If you have a torque screwdriver, torque the clamp nut to 4 IN-LBS.) Tighten the clamp nut screw and mark with yellow paint.
9. Move the mill table to the far back position (motor end). Tighten down completely the five SHCS attaching the ball nut to the nut housing.

10. For $\mathbf{4 0}$ and $\mathbf{5 0} \mathbf{~ m m}$ lead screws only:

> Move the table all the way forward. Tighten down completely the SHCS that mount the bearing support to the base.
> Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then $1 / 8$ turn more (If you have a torque screwdriver, torque the clamp nut to 4 in -lbs).
11. Reinstall the motor according to "Axis Motor Removal and Installation". If applicable, replace the hard stop from the lead screw support bearing end of the lead screw.
12. Check lead screw torque at bearing support end with torque tester. Jog the table all the way to the front. Check the lead screw torque again. It should be the same as the previous reading.
13. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

10.3 Z-Axis Lead Screw Removal

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH THE SHAFT STOP BLOCK. DO NOT MOVE THE SPINDLE DURING LEAD SCREW SERVICE.

1. Turn the machine ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head. Remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
3. Lower the spindle head to it's lowest position. Install cylinder shaft stop. Handle jog Z-axis up until the shaft stop blocks the axis.
4. Disconnect electrical power.
5. If applicable, remove the hard stop from the bearing housing on the lead screw.
6. Disconnect the oil line at the ball nut.
7. Loosen the $10-32 \times 1 / 2$ SHCS and remove the clamp nut on the lead screw support bearing end.
8. Remove the axis motor in accordance with "Z-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing motor from the housing, set it to one side.
9. Loosen the $10-32 \times 1 / 2$ " SHCS and remove the clamp nut on the lead screw in the motor housing.
10. For 32 mm lead screws:
$>$ Loosen the six $1 / 4-20 \times 1^{1 "}$ SHCS and remove the bearing sleeve from the motor housing. Push on the opposite end of the lead screw to loosen.

CAUTION! DO NOTPRYTHE BEARING SLEEVE AWAYFROMTHE HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.
> Hand-turn the lead screw to move the screw up until the bottom end clears the support bearing by approximately six inches (6").
> Remove the SHCS from the ball nut and lower the lead screw down and to the right of the support bearing, past the Z-axis way cover. For the VF-6, remove the lead screw from top of column.

USE EXTREME CAUTION! DO NOT DAMAGE THE THREADS ON THE LEAD SCREW.

For 40 and 50 mm lead screws:
> Loosen the SHCS that mount the bearing support to the column, and remove. Remove the pull pins from the bearing support.
> Loosen the five SHCS in the ball nut and remove the lead screw by pulling from the bearing support end.

Figure 10-7. Z-axis lead screw and components.

INSTALLATION -

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK. DO NOT MOVE THE SPINDLE DURING LEAD SCREW SERVICE.

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION: MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.

2. If $\mathbf{4 0} \mathbf{0 r} \mathbf{5 0} \mathbf{~ m m}$ lead screw:

> Insert the lead screw into the bearing support. Screw the clamp nut on a few turns.
> Insert the lead screw, with the bearing support attached, into place on the column. Ensure the lead screw goes through the ball nut housing and the bearing sleeve.
> Mount the bearing support to the column with SHCS, but do not tighten completely. Replace the pull pins in the bearing support.
> Install the spacer ring on the motor end of the lead screw.
> Hand-turn the ball nut until it comes into contact with the nut housing mounting surface. If necessary, turn the leadscrew to correctly position lube fitting of the ball nut. Insert, but DO NOT TIGHTEN, the $5 / 16-18 \times 3 / 4$ " (or M10 $\times 25 \mathrm{~mm}$) SHCS, attaching the ball nut to the nut housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.)
> Skip to Step 7.
3. Slide the lead screw up into the nut housing and gently lower it until it is resting in the support bearing.

Figure 10-8. Reinstalling the lead screw.
4. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting on the lead screw.)
5. Insert the six $1 / 4-20 \times 1$ " SHCS attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite $®^{\circledR}$ on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
6. Hand-turn the ball nut until it comes into contact with the nut housing mounting surface. If necessary, turn the leadscrew to correctly position lube fitting of the ball nut. Insert, but DO NOT TIGHTEN, the five $1 / 4-$ $20 \times 1^{\prime \prime}$ (or $1 / 4-20 \times 3 / 4$ ") SHCS attaching the ball nut to the nut housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.)
7. The following sequence is important to ensure proper installation of the lead screw:
\rightarrow Screw the clamp nut against the bearing at the bearing support end, hand tight. Tighten the clamp nut screw.
$>$ Tighten the clamp nut, hand tight, on the motor end.
$>\quad$ Install the shaft lock onto the bearing support end of the lead screw. This will keep the lead screw from turning while torquing the clamp nut.
$>$ Place a spanner wrench on the clamp nut at the motor end of the assembly.
$>$ Torque the clamp nut to 15 FT-LBS.
NOTE: The $40 / 50 \mathrm{~mm}$ leadscrew clamp nut should be torqued to 50 FT-LBS.
$>$ Remove the shaft lock.
$>$ Tighten the clamp nut screw and mark with yellow paint.
$>\quad$ Loosen the clamp nut screw and clamp nut at the bearing support end and re-tighten, hand tight.
$>$ Tighten the bearing support end clamp nut another $1 / 8$ turn. (If you have a torque screwdriver, torque the clamp nut to 4 IN-LBS.) Tighten the clamp nut screw and mark with yellow paint.
8. Tighten down completely the five SHCS attaching the ball nut to the nut housing.
9. Reinstall the motor according to "Z-Axis Motor Removal and Installation". Reinstall the hard stop at the support bearing end of the lead screw.
10. Reconnect electrical power.
11. Jog the spindle down and remove the cylinder shaft stop.
12. For $\mathbf{4 0}$ and $\mathbf{5 0} \mathbf{~ m m}$ lead screws only:
> Jog the spindle head towards the bearing support end.
> Tighten down completely the SHCS that mount the bearing support to the column.
> Loosen the clamp nut on the bearing support end. Adjust the nut until it seats on the bearing. Retighten the clamp nut hand-tight, then $1 / 8$ turn more (If you have a torque screwdriver, torque the clamp nut to 4 in -lbs).
13. Check lead screw torque at bearing support end with torque tester. Jog the the spindle head to it's highest position. Check the lead screw torque again. It should be the same as the previous reading.
14. Check for backlash in the lead screw ("Accuracy/Backlash" section) or noisy operation.

11. BEARING SLEEVE REMOVAL AND INSTALLATION

Please read this section in its entirety before attempting to remove or replace the bearing sleeve.

TOOLS REQUIRED

\checkmark Spanner wrench
$\checkmark \quad$ Pre-load fixture
\checkmark Wood block (16" long)
$\checkmark \quad$ Z-Axis: Cylinder shaft stop (P/N 99-7562-VF-0 through 4, P/N 93-9962-VF-6 through 10)

NOTE: For machines equipped with 40 or 50 mm lead screws, the lead screw must be removed in order to remove the bearing sleeve. Refer to the "Lead Screw Removal/Installation" section for instructions.

11.1 X-Axis Bearing Sleeve Removal

1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.

Figure 11-1. X-axis lead screw and components.
2. Loosen the SHCS and remove the chip tray from the mill table.
3. Remove the axis motor in accordance with "X-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation. After removing from the motor housing, set it to one side.
4. Loosen the $10-32 \times 1 / 2^{\prime \prime}$ SHCS and remove the clamp nut on the lead screw in the motor housing.
5. Loosen the six $1 / 4-20 \times 1^{\prime \prime}$ SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

[^0] TO THE SLEEVE, BEARING, OR LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.
2. Move mill table to the far right.
3. Place the bearing sleeve in the motor housing as shown. (It may be necessary to align the bearings in the sleeve to facilitate mounting.)

Figure 11-2. Lead screw assembly.
4. Insert the six $1 / 4-20 \times 1^{11}$ SHCS, attaching the bearing sleeve to the motor housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.) Tighten down completely.

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
5. Start the clamp nuts on both ends of the lead screw. Do not tighten.
6. Hand-turn the mill table to the far left position.
7. Loosen the six $1 / 4-20 \times 1$ " SHCS attaching the bearing sleeve to the motor housing and retighten completely. DO NOT SKIP THIS STEP. It ensures the lead screw is installed and runs parallel and flat to the linear guides and the saddle.

NOTE: For the angular contact design bearing, no pre-load is necessary. Do the following:
> Tighten the clamp nut on the motor housing to 15 foot-pounds.
$>$ Tighten the SHCS on the clamp nut.
$>$ Tighten the clamp nut on the support bearing end of the lead screw until it contacts the bearing, then tighten further approximately $1 / 8$ of a turn.
> Tighten the SHCS on the clamp nut.
8. Reinstall the axis motor in accordance with "X-Axis Motor Removal".
9. Reinstall the way covers and chip tray.
10. Check for backlash in the X-axis lead screw (Troubleshooting section) or noisy operation.

11.2 Y-Axis Bearing Sleeve Removal

1. Turn the VMC ON. ZERO RETURN all axes and put the machine in HANDLE JOG mode.
2. Remove the axis motor in accordance with "Y-Axis Motor Removal".
3. Remove the hard stop from the bearing housing on the lead screw.
4. Loosen the $10-32 \times 1 / 2$ SHCS and remove the clamp nut from the bearing support end of the lead screw.
5. Loosen the six $1 / 4-20 \times 1$ " SHCS and remove the bearing sleeve from the motor housing. Push on the mill table or the opposite end of the lead screw to loosen.

CAUTION: DO NOT PRY THE BEARING SLEEVE AWAY FROM THE MOTOR HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR THE LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.
2. Slide the bearing sleeve into the motor housing and start all six $1 / 4-20 \times 1$ " SHCS into the motor housing. (Place a drop of blue Loctite ${ }^{\circledR}$ on each of the SHCS before inserting.)

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
3. Move the table to the rear of its travel.
4. Tighten the six $1 / 4-20 \times 1$ " SHCS that attach the bearing sleeve to the motor housing.
5. Loosely install the clamp nut on the lead screw at the motor housing end.

NOTE: For the angular contact design bearing, no pre-load is necessary (follow the procedure in " X -axis bearing sleeve" section).
6. Reinstall the axis motor.
7. Check for backlash in the Y-axis lead screw (Troubleshooting section) or noisy operation.

11.3 Z-Axis Bearing Slezve Removal

Abstract

WARNING! ALWAYS BLOCK THE HYDRAULIC CYLINDER WITH SHAFT STOP BLOCK BEFORE SERVICING ANY Z-AXIS COMPONENTS.

1. Turn the machine power ON. Zero return (ZERO RET) all axes and put the machine in HANDLE JOG mode.
2. Loosen the six SHCS that attach the rear cover to the side covers, and remove from the spindle head.

NOTE: If machine is equipped with a hydraulic counterbalance, remove entire spindle head cover for VF-0/OE/1/2, VCE 500/550/700/750, or right side spindle head cover for VF-3/4, VCE 1000/1250.
3. If the bearings are to be serviced, remove the three SHCS attaching the Z-axis way cover to the spindle head and slide the cover to the bottom position.
4. Remove the hard stop from the bearing housing on the lead screw.
5. Loosen the $10-32 \times 1 / 2$ " SHCS and remove the clamp nut from the bearing support end of the lead screw.
6. Raise the spindle head until the bottom edge is approximately sixteen inches (16") above the mill table.
7. Install cylinder shaft stop. HANDLE JOG Z-axis up until shaft stop block axis.
8. Place the wood block beneath the spindle head and lower the spindle head until it is resting on the block.

Figure 11-3. Z-axis bearing sleeve.
9. Perform Steps 6-10 of "Z-Axis Motor Removal".

NOTE: The motor's electrical connections do not need to be removed for this operation.
After removing from motor housing, set it to one side.
10. Loosen the $10-32 \times 1 / 2$ SHCS and remove the clamp nut from the motor housing end of the lead screw.
11. Loosen the six $1 / 4-20 \times 1$ " SHCS and remove the bearing sleeve from the motor housing. Hand-turn the lead screw in an upward direction to push the bearing sleeve out of the motor housing.

CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE MOTOR HOUSING. DAMAGE TO THE SLEEVE, BEARING, OR THE LEAD SCREW WILL RESULT.

INSTALLATION -

1. Ensure all mating surfaces on the bearing sleeve, motor housing, nut housing, and ball nut are free of dirt, burrs, grease, or other contaminants.

CAUTION! MATING SURFACES MUST BE CLEAN OR MISALIGNMENT MAY OCCUR, SERIOUSLY AFFECTING THE PROPER OPERATION OF THE MACHINE.
2. Slide the bearing sleeve into the motor housing and start all six $1 / 4-20 \times 1$ " SHCS into the motor housing. (Place a drop of blue Loctite® on each of the SHCS before inserting.)

CAUTION! Do not use more than one drop of Loctite ${ }^{\circledR}$. An excessive amount will cause a film between the sleeve and housing, which could result in backlash.
3. Tighten the six $1 / 4-20 \times 1$ " SHCS that attach the bearing sleeve to the motor housing.
4. Loosely install the clamp nut on the lead screw at the motor housing end.
5. Reinstall the hard stop on the bearing housing end of the lead screw.

NOTE: For the angular contact design bearing, no pre-load is necessary. Follow the procedures as outlined in "X-Axis Bearing Sleeve" section.
6. Reinstall the axis motor in accordance with "Z-Axis Motor-Installation".
7. Remove shaft stop.
8. Check for backlash in the Z-axis lead screw (Troubleshooting section) or noisy operation.

12. AUTOMATIC TOOL CHANGER

TOOLS REQUIRED
\checkmark Two-jaw puller
\checkmark 1-2-3 Block
\checkmark Hydraulic jack
\checkmark Cardboard

12.1 Gabriace Gasting Replacement

NOTE: If the carriage casting is damaged in a crash, it must be replaced. Look specifically for broken bosses where the roller bolts mount to the casting. If the carriage casting is broken off of the holding plate but not damaged, only the roller bolts need be replaced.

1. Turn the machine power off.
2. Remove the left side enclosure panel of the machine.
3. Disconnect all cables from the carriage casting and remove any bolts holding the ATC to the holding plate.

NOTE: If the carriage casting has been damaged, replacement is necessary; move the ATC to a bench and remove all components from the damaged carriage casting and place in the new casting. Skip to Step 6 for replacement.
4. Place a piece of cardboard over the machine's table, and carefully lower the carriage casting (with carousel) onto the machine table.
5. If the carriage casting has crashed and/or has been broken off of the holding plate, it should be inspected for damage before going any further.
6. Remove any damaged roller bolts from the carriage casting. Replace with new bolts.
7. With a lifting device, carefully lift the ATC assembly up and onto the holding plate.

NOTE: Ensure the cam follower on the slip clutch engages the slot on the carriage casting.
8. With the ATC assembly securely supported, install the lower roller bolts and adjust in accordance with "Roller Bolt Replacement".
9. Repair or replace any cables damaged and adjust the ATC. Align the ATC assembly in accordance with the following sections, and set Parameter 64 in accordance with "Spindle Motor and Transmission" section.

12.2 Roller Bolt Replacement

1. Remove the shuttle motor cover from the back of the machine (VF-0, VF-1, VF-2).
2. Place a support under the center of the carousel.
3. Loosen the eccentric locks on the bottom roller bolts.

CAUTION! Ensure the ATC is securely supported, otherwise it may fall when an upper roller bolt is removed.
4. Carefully remove the damaged roller bolt from the ATC shuttle and replace with a new bolt.

NOTE: REPLACE ONLY ONE ROLLER BOLT AT A TIME. Carefully inspect the v-groove rollers for roughness or damage, and replace if necessary.
5. Tighten the eccentric locks on the bottom rollers until there is no play between the rollers and the V-guide on the ATC holding plate.
6. Set the tool change offset (Parameter 64) in accordance with "Setting Parameter 64" section.
7. Verify the ATC alignment in accordance with the following section.
8. Reinstall the shuttle motor cover (VF-0, VF-1, VF-2).

12.3 Automatic Tool Ghanger (ATC) Alignment

1. Verify that the spindle orientation is correct (Refer to appropriate section).
2. Command an automatic tool change, and press EMERGENCY STOP when the shuttle is in the full in position.
3. Verify that the spindle dog lines up to the alignment key in the ATC, in the Y plane.

NOTE: If the spindle dog and alignment key do not line up, loosen the four HHB that hold the ATC holding arm to the column.

Figure 12-1. Underside showing centering measurements.
4. Move the entire tool changer until the tool alignment key lines up with the spindle dog. Tighten the four HHB.

NOTE: Parameter 64 must be checked, and adjusted if necessary, when the ATC is aligned.
5. Make at least 50 tool changes after the alignment is complete. Verify that the tools are being picked up squarely.
mechanical service

12.4 Shuttle Stroke Adjustment

6. Move the ATC away from the spindle and loosen the four HHBs in the ATC holding arm in the X-axis plane.
7. Push the cam follower to its full upward stroke, then push the entire ATC assembly in by pushing on the tool changer holding plate until ATC is fully engaged on the tool holder.
8. Ensure the extractor is making full contact on the tool flange.

Figure 12-2. Automatic Tool Changer - Mechanical Assembly (Side View)

12.5 Extractor Fork Replacement

NOTE: Extractor forks that do not hold the tool holders firmly, or forks that are bent, must be replaced. Damage to the ATC will result if not replaced.

1. With no tool holders in the spindle or in the ATC, command "ATC FWD" until the extractor fork needing replacement is facing the spindle.
2. Command "ATC FWD" again, but press the EMERGENCY STOP after the spindle head lifts up off the carousel

NOTE: At this point, the shuttle should be in and the spindle should be about $41 / 2^{\prime \prime}$ above the carousel.
3. Loosen the SHCS that attach the damaged extractor fork to the ATC carousel.

Figure 12-3. Automatic Tool Changer - Mechanical Assembly (Top View)
4. With the extractor fork removed, inspect the alignment key mounted under the extractor. If it is damaged due to improper spindle orientation, replace it and correct the orientation (Refer to appropriate section) after the extractor fork has been replaced.
5. Put a drop of blue Loctite on each of the SHCS and attach the new extractor fork to the ATC with the SHCS. DO NOT OVER-TORQUE! Ensure the distance from the edge of the extractor fork to the edge of the pocket in the carousel is the same on both sides in accordance with the following section.
6. Test run the ATC to ensure proper operation.

12.6 Sliding Gover Replacement

NOTE: If any of the sliding covers on the ATC do not slide freely or are bent in a crash, they must be replaced.

1. Loosen the four screws that attach the sliding panel cover to the carousel. Be careful to not lose the spring that holds the sliding cover closed or the number plate on the ATC carousel.
2. Inspect the cover for any galling or damage. Inspect the spring for damage.
3. Loosely install the two innermost screws that attach the number plate and the cover to the carousel and slide the spring into position in the slot in the ATC carousel.
4. Put the replacement sliding panel in place, making certain that the tongue on the panel pushes on the end of the spring.
5. Tighten the two rear screws completely and install the two front screws.
6. Ensure the sliding panel moves freely.

NOTE: If the sliding door is bent, determine the cause before resuming normal operation.
12.7 Shuttle Motor Removal

1. Turn the VMC off.
2. Remove the cover from the tool carriage casting.
3. Remove the hex bolt that attaches the cam follower to the slip clutch (see Fig. 12-2)
4. Push the tool changer in as far as it will go.
5. Loosen the set screw that secures the slip clutch assembly to the shuttle motor (see Fig. 12-3).
6. Using a small two-jaw puller, pull the slip clutch assembly (see Fig. 12-3) off the shuttle motor shaft.
7. Remove the SHCS attaching the cover to the holding arm casting on the tool changer.
8. Remove the cover from the wire channel inside the holding arm casting and unplug the shuttle motor from the wiring harness.

Figure 12-4. Wiring harness for shuttle motor.
9. Remove the four FHCS attaching the shuttle motor to the holding plate on the tool changer. The FHCS are visible from the front of the VMC. Do not remove the HHB's holding the shuttle motor gear box together.

12.8 Shuttile Motor Installation

1. Install the new motor on the tool changer holding plate using the four $10-32 \times 3 / 4$ FHCS. Before inserting the FHCS, place a drop of blue Loctite $®$ on each screw.
2. Reattach the shuttle motor connection to the wiring harness in the holding arm casting.
3. Replace the cover on the holding arm casting.

Figure 12-5. Front view of holding plate showing FHCS location.
4. Reattach the slip clutch assembly to the shuttle motor shaft. Before placing on the shaft, put two or three drops of red Loctite ${ }^{\circledR}$ on the slip clutch hub.
5. Insert and tighten down the set screw holding the slip clutch assembly to the shuttle motor shaft. Before inserting the set screw, put a drop of blue Loctite ${ }^{\circledR}$ on the set screw.
6. Ensure the actuating arm on the slip clutch assembly contacts the shuttle IN and OUT limit switches.
7. Ensure the hub of the slip clutch assembly does not interfere with the face plate on the shuttle motor.
8. Start the VMC and go through a performance check consisting of at least 30 tool changes, assuring correct operation.

12.9 Turret Motor Removal

1. Power on the VMC and put it in MDI mode.
2. Zero Return all axes (ZERO RET - AUTO ALL AXES).
3. Press ATC FWD then the EMERGENCY STOP after the spindle head has moved during the tool change cycle. At this time, the tool changer should be at the full in position and the spindle head should be above the tool changer.
4. Turn the VMC power OFF.
5. Remove the 10-32 SHCS from the carriage casting cover and remove the cover.
6. Tag both limit switch connections for reassembly, then unplug the limit switches' and the power's connections at the carriage casting.
7. Remove the four SHCS attaching the turret motor and mounting plate to the tool carriage casting.

Figure 12-6. Carriage casting with cover removed.
8. Carefully lift the turret motor assembly off of the tool carriage casting.

NOTE: The gear motor should never be disassembled and is not field-serviceable. All gear motors should be returned to Haas for evaluation and rebuilding.

INSTALLATION -

1. Grease the locking element and drive pin on the Geneva driver. Also, grease the teeth on the Geneva star on the ATC.
2. Rotate the Geneva driver until the cam depresses the limit switch on the turret motor assembly.
3. Place a narrow strip of paper around the locking element of the Geneva driver and install the turret motor assembly onto the casting. Be certain that the locking element of the Geneva driver is seated against the star with the paper strip acting as a shim.

Figure 12-7. Required spacing for Geneva driver.
4. Attach the turret motor assembly to the carriage casting with the four SHCS.
5. Reconnect the power and limit switch lines to the turret motor.
6. Power on the VMC and ZERO RETURN all axes (ZERO RET - AUTO ALL AXES).
7. Go to MDI mode and press "T-1-ATC FWD".

NOTE: The machine may alarm at this time (Alarm 115 or 127). If this occurs, ZERO RETURN the Z-axis (ZERO RET - SINGL AXIS) and repeat step 8. This step may need to be repeated two times to clear all possible alarms.
8. Press "T-9-ATC FWD". The tool changer should go to tool nine. If the tool changer travels to tool seven, the turret motor is wired backwards. Reverse motor leads and repeat steps 7-10. Also, the turret should run quietly with no strain in the motor, banging, or vibration.
9. Reinstall the tool carriage casting cover.
10. Test the tool changer for proper operation.

12.10 Geneva Star Replacement

NOTE: If the ATC Geneva star is damaged or worn in its driven slots, it must be replaced.

1. Turn the machine power off.
2. Remove the cover from the front of the ATC shuttle.
3. Remove the turret motor assembly (Refer to previous section).
4. Place a support for the ATC under the center of the carousel.
5. Loosen the nut inside the carriage casting that attaches the ATC carousel assembly to the casting. There is a socket head in the top of the shaft to hold it stationary while loosening the nut.
6. Place the cardboard over the mill table and carefully lower the carousel until it rests on the table.
7. Remove the six SHCS that attach the Geneva star to the bearing housing on the ATC carousel.
8. Install the Tool \#1 standoff on the replacement Geneva star.
9. Install the replacement Geneva star. Check the concentricity of the star to the shaft on the carousel assembly; it must be within 0.005 ". If the star is not within tolerance, loosen the SHCS and adjust the alignment until it is acceptable.
10. Installation is reverse of removal. Be certain to grease the perimeter of the star before installation and readjust the ATC in accordance with "Alignment Preparation" and "Shuttle Stroke Adjustment", if necessary.

12.11 ATC Trap Door Replacement

NOTE: If the ATC trap door is damaged in a crash, it must be replaced.

1. Turn the machine power off.
2. Remove the turret motor assembly in accordance with the previous section.
3. Place a support for the ATC under the center of the carousel.
4. Loosen the nut inside the carriage casting that attaches the ATC carousel assembly to the casting. There is a socket head in the top of the shaft to hold it stationary while loosening the nut.
5. Place the cardboard over the mill table and carefully lower the carousel until it rests on the table.
6. Remove the two SHCS that attach the guide pin for the ATC trap door to the ATC holding plate and remove the guide pin.
7. Slide the trap door from between the carousel cover and the shuttle casting. Be careful to not lose the two nylon washers that sandwich the trap door between the carousel cover and the shuttle casting.
8. Installation is reverse of removal. When installing the guide pin, ensure the mounting slot is approximately central to the mounting screws and be certain the pin does not interfere with the top of the ATC carousel cover. Grease the carousel cover where the plastic standoffs ride, the slot in the ATC shutter, the guide pin, and the nylon washers where the shutter pivots. The position of the ATC may need to be readjusted after installation.

13. GRID OFFSET GALCULATION

Please read this section in its entirety before attempting to set the grid offset.

GUIDELINES -

The encoder Z channel signal must occur between $1 / 8$ and $7 / 8$ revolution from where the home switch is released. If DISTANCE TO GO is less than $1 / 8(.0295)$ or greater than $7 / 8(.2065)$ of a revolution, it will alarm to "Zero Return Margin Too Small".

In ZERO RETURN mode, the DISTANCE TO GO is the amount the encoder rotated from when the switch was released until it found the Z channel signal. The ideal amount for the DISTANCE TO GO is .118 (This equals $1 / 2$ of a revolution of the encoder).

SETTING THE OFFSET -

1. Set the grid offset to zero. (Parameter $125,126,127,128$, or 170, depending on the axis being set.) Setting \#7 (PARAMETER LOCK) must be OFF to reset grid offset.
2. Press ZERO RET and ZERO SINGL AXIS the axis you are setting (X, Y, Z, A, or B).
3. Calculate the grid offset using the following formula, and write the result in Parameter 125,126, 127, 128, or 170 (depending on the axis being set).
(DISTANCE TO GO-.118) x Ratio = Grid Offset
The Ratio (steps/unit) for the $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{A}$, and B axes are the values in Parameters 5, 19, 33, 47, and 155, respectively.
4. ZERO RET the axis again to use this offset.

NOTE: If Z-axis grid offset is reset, Parameter 64 should be checked and adjusted accordingly.

14. ENGLOSURE REPLACEMENT

Please read this section in its entirety before attempting to replace the doors or windows.
TOOLS REQUIRED
\checkmark Trim installation tool (dull-edged knife or caulking spatula)

14.1 Door Replacement

CAUTION! If possible, have two people performing this operation, as the weight of the doors may be a factor in removal.

REMOVAL -

1. Turn the machine power off.
2. Slide the doors to the full open position.
3. Remove the tension springs (2) connecting the two swivel roller brackets at the top and bottom of the door.
4. Slide the door to the fully closed position. Loosen the two upper roller hex nuts, and disengage the upper swivel roller brackets from the top roller guide.
5. Lift the door from the bottom roller guide and remove.

INSTALLATION -

6. Ensure that the lower roller hex fasteners are wrench tight and the upper roller fasteners are finger tight in the middle of their adjusting slots. Place the door into the enclosure, and position with the lower rollers resting on the lower roller guide.
7. Rotate the door to the upright position, and engage the top rollers onto the top roller guide.
8. Replace the tension springs onto the upper and lower roller swivel brackets. Tighten the upper roller fasteners.
9. Verify that the door travels smoothly. If it does not:
> Check that all roller wheels are seated and roll on their tracks.
> If all roller wheels are seated on their tracks, it will be necessary to adjust the door travel by loosening the upper and lower roller hex fasteners.

Figure 14-1. Roller/roller guide assembly.

DOOR ADJUSTMENTS -

10. Close both doors and check that the vertical gap between them is uniform. If it is not:
> Determine which door must be adjusted.
Loosen the door's outer lower roller attachment and pivot the door on the inner lower roller wheel.
) When the door is in the desired position (the vertical gap is uniform), tighten the lower outer roller fastener.

Figure 14-2. View of vertical gap between front doors.
11. Check the gap between the door and the front panel flange, and verify it is $5 / 8$ " throughout the travel of the door. If it is not:
> Loosen the door's upper roller fasteners and tilt the door forward or back, as necessary, to adjust door position.

Figure 14-3. View of gap between front of door and front panel flange.

SWITCH ADJUSTMENT -

12. Move the door to the fully closed position. Go to the "Diagnostics" page on the control panel, and ensure "DOOR S" reads " 0 ". Move the door to the open position, and ensure "DOOR S" reads "1". If either reading
is incorrect:
> Loosen the SHCS that mounts the switch actuator bracket to the top of the door. NOTE: It is possible to access this bracket from the side window.
> Move the bracket in its slot to the proper position and tighten the SHCS.

14.2 Window Replagement

REMOVAL -

1. Turn the machine power off.
2. Move the door to the fully closed position so the window is accessible. Use a trim installation tool to pull the locking tab out of the inside of the window seal (the tab is a part of the seal).
3. Remove the window panel from the seal. The tool can be placed between the window panel and the seal to aid in removing the window panel.
4. Remove the seal from the enclosure's cutout.

Figure 14-4. Cross-section of window seal.

INSTALLATION -

5. Replace the seal around the enclosure's cutout, with the locking tab facing the inside of the machine.
6. Replace the window panel into the seal. The tool can be placed between the window panel and the seal to aid in replacing the window panel into the seal.

15. HYDRAULIC GOUNTERBALANGE

TOOLS REQUIRED

\checkmark (1) $4 \times 4 \times 14$ " head support block
\checkmark Hydraulic counterbalance service kit, consists of:

- Pressure tank with manifold assembly, prefilled with (2) quarts DTE-25 hydraulic oil
- Hydraulic cylinder with hose attached (if necessary)

15.1 Hydraulic Tank Replacement

REMOVAL -

CAUTION! While performing this procedure, the spindle head may drop if the control loses power or alarms.

1. Raise spindle head by HANDLE JOG up to $14.5^{\prime \prime}$ above table. Insert wood block and lower head casting onto it. EMERGENCY STOP the machine. Head should rest securely on table block. Power OFF VMC.

NOTE: DO NOT LOWER SPINDLE ONTO BLOCK.
2. Disconnect the two-pin end of the pressure sensor cable(s) to the pressure sensor(s), if tank is equipped with sensor.

Figure 15-1. Hydraulic counterbalance charge/discharge kit (shown in place to discharge system).
3. Remove cap to Schrader filler valve.
4. Ensure T-handle of the gas chuck is turned completely counterclockwise. Attach charge/discharge kit by tightening gas chuck to the Schrader valve finger tight, then wrench lightly to tighten (see Figure 15-1).
5. Place the CGA 580 end of charge/discharge kit into a bucket to the contain the hydraulic oil while discharging the system.
6. Slowly turn the T-handle clockwise until the system begins to discharge. Complete discharge may take up to 10 minutes. Verify tank gauge reads 0 psi .
7. Turn the T-handle completely counterclockwise and remove the charge/discharge kit from the Schrader valve.
8. Disconnect the hydraulic hose from the tank assembly.
9. Remove the tank assembly from the column by removing the four SHCS from the tank mount.

INSTALLATION -

10. Connect the hose to the tank before mounting the tank in the inverted position. This prevents hydraulic oil from spilling.

NOTE: For a positive seal, ensure the hose-to-tank connection is straight, and not skewed.)
11. Mount the tank assembly to the column with the tank mount and four SHCS. Ensure the hydraulic hose is not twisted.
12. Connect the two-pin end of the pressure sensor cable(s) to the pressure sensor(s).
13. Use cable ties to secure the cable to the hydraulic hose.

NOTE: For this step, use regulated dry nitrogen gas (welding grade acceptable) that accepts a right-hand thread CGA 580 fitting.
14. Attach the CGA 580 fitting end of the charge/discharge kit to the source pressure. Ensure T-handle of the gas chuck is turned completely counterclockwise. Attach charge/discharge kit by tightening gas chuck to the Schrader valve finger tight, then wrench lightly to tighten. Pressurize the system to required pressure as listed in Figure 15-2.

NOTE: For VF-6/8 follow installation procedure for each hydraulic tank.

NOTE:

> Do not use compressed air, oxygen or flammable gas.
> Refer to the table below and verify pressure according to machine and spindle head position.
V Verify cylinder is seated in counterbore.

	VF $-0 / 1 / 2 / 6 / 7 / 8 / 10$	VF $-6 / 7 / 10 \mathrm{w} / 50 \mathrm{~T}$ spindle	VF $-3 / 4$
Machine at top of travel	750 psi	1150 psi	1150 psi
Machine at full travel	790 psi	1210 psi	1210 psi

Figure 15-2. Tank pressure requirements.
15. Power on the machine and zero return (ZERO RET) Z-axis only. Check for any leaks or abnormal noises. Verify tank pressure at top of travel. Remove charging system and replace valve cap.

15.2 Hydraulic Gylinder Replacement

REMOVAL-

1. Remove the hydraulic tank as described in previous section.
2. To gain access to the cylinder rod, remove the three SHCS holding the Z-axis way cover to the spindle head.
3. Remove the cotter pin and lock nuts from the threaded end of the cylinder rod.

Figure 15-3. Hydraulic Cylinder Rod Installation for VF-0 through 4 and (VF-6/8).

NOTE: For VF-6/8 loosen jam nut from clevis then remove the cotter pin, clevis pin, clevis and jam nut.
4. Remove the band clamp that holds the cylinder to the stabilizer bracket. Loosen the two SHCS that attach the bracket to the column.
5. Remove the hydraulic cylinder from the top of the column.

Figure 15-4. VF-Series hydraulic counterbalance - right side view.

Fig. 15-5 VF-Series hydraulic counterbalance view - left side view.

NOTE: Do not disassemble unit. Keep the hose attached to the cylinder.
6. Return complete assembly to HAAS Automation.

INSTALLATION-

7. Install cylinder with cylinder rod extended from top of column.

NOTE: Cylinder rod should pass through column bracket and spindle head bracket. Cylinder body must rest in column bracket counterbore.
8. Orient cylinder body with hydraulic hose facing away from lead screw.

NOTE: For VF-6/8 orient cylinder bodies with hydraulic hose facing the lead screw.
9. Install lock nuts, at threaded end of cylinder rod, wrench tight. Install safety cotter pin.

NOTE: For VF-6/8 install jam nut and clevis at end of cylinder rod then attach to spindle head bracket with clevis pin. Install safety cotter pin and lock the clevis by tightening jam nut.
10. Install the hydraulic tank as described in the previous section, but DO NOT power up the machine.
11. Power on the machine and zero return (ZERO RET) Z-axis only. Observe cylinder body for motion or abnormal noises. Check for fluid at manifold, cylinder hose connection and cylinder rod. Verify tank pressure at top of travel. Remove charging system and replace valve cap.
12. Install the band clamp and tighten the two SHCS that attach the stabilizer bracket to the column.
13. Zero return (ZERO RET) machine. HANDLE JOG Z-axis in 0.1 increments. Verify full Z travel.
14. Cycle Z-axis, using the following program, for five minutes and check for oil leaking at top of cylinder and cylinder rod.

```
G28, G54, Z-14.
M99
50% Rapid
```

15. If Z-axis overcurrents alarm during travel, verify and correct system pressure.

NOTE:

> If Z-axis overcurrent alarm at top or bottom of travel, call HAAS Automation Service Department immediately for assistance.
> If fluid leaks from hydraulic fittings, check that fittings are tight.
> If leaking continues, call HAAS Automation Service Department for assistance.
16. Reinstall Z-axis way cover with three SHCS that hold it to the spindle head.

16. THROUGH THE SPINDLE GOOLANT SYSTEM - ADJUSTMENTS

TOOLS REQUIRED

\checkmark Tool holder with TSC tool or restrictor (with a small orifice)
\checkmark TSC Gauge Kit (P/N 93-9010), includes:

- 0-15 PSI Precharge pressure gauge
- 0-160 PSI Purge pressure gauge (Not used on newer TSC machines)
- 0-160 Coolant pressure gauge
- Ball valve

16.1 Precharge Regulator Adjustment

1. CAUTION! Extreme care must be taken in making this delicate adjustment. Insert a short piece of $1 / 4$ " plastic tubing into the 0-15 psi pressure gauge. Insert the short tube into the precharge pressure regulator (located on top of the transmission) and connect the plastic precharge tube (leading to the TRP) to the pressure gauge.
2. Manually turn on the precharge air by pushing the plunger on the precharge solenoid valve.
3. Hold down the precharge solenoid valve for at least 20 seconds to allow the pressure reading to stabilize, then set the precharge pressure to $4.0 \mathrm{psi}(\pm 0.4 \mathrm{psi})$. Release the solenoid and hold it down again for 20 seconds and re-check the precharge pressure. Repeat this a few times to ensure the pressure setting remains stable. Be sure the regulator adjustment knob is securely locked in place.
4. Remove the pressure gauge and short $1 / 4$ " hose. Reattach the precharge tube to the regulator.

16.2 Priming the TSC System

NOTE: When machine is ready to operate, with coolant in the coolant tank, prime the Through the Spindle Coolant (TSC) system according to the following procedure.

1. With no tool in the spindle, switch to MDI mode.
2. Press the AUX CLNT button to turn on TSC. Wait for coolant to flow from the spindle.
3. Allow coolant to flow for at least one minute.
4. Press the AUX CLNT button again to turn off TSC.

16.3 Setting Pump Relief Valve

NOTE: If coolant pressure with no tool in the spindle is 60 psi or less, replace the pump head only.

1. With no tool in the spindle, prime the TSC system as described above.
2. Remove the sealing cap from the pump relief valve. Loosen the lock nut and back off the relief valve screw several turns (until it is almost all of the way out).
3. Insert a standard (no through hole in pull stud) tool holder into the spindle.
4. Turn on TSC.
5. Start with the pressure below 140 psi . Adjust the pressure relief valve until the pressure on the gauge rises to 140 psi. Tighten the lock nut, and replace the sealing cap.

WARNING! Do not attempt to adjust pressure above 140 psi .
6. Check for leaks while TSC is still running. Shut off TSC.
7. Mark across the relief valve lock nut and sealing cap with a paint marker.

16.4 Testing the Goolant Pressure Switch

1. Insert the ball valve and pressure gauge into the TSC pump outlet. The ball valve must be between the pump and pressure gauge.
2. Insert a TSC type tool holder (with a TSC drill or restrictor) in the spindle. CAUTION! Changing tools after running TSC can cause coolant to spray out. Wear safety glasses.
3. Set Parameter 236 to 100.
4. Turn on TSC. Test low coolant pressure switch by slowly shutting off the ball valve in the coolant line (pump should shut off at $40 \mathrm{psi}+/-5 \mathrm{psi}$). If the switch is outside this range, replace the switch.

NOTE: Test the electrical continuity of the pressure switch cable and the control function by shorting the leads of the cable. The "LO CLNT" bit on the Diagnostics page should change from "1" to "0". Check this before replacing the pressure switch.
5. Reset Parameter 236 to 1000.
17. AIR / OIL LINE DIAGRAM

MECHANICAL SERVICE

THROUGH THE SPINDLE COOLANT SYSTEM FLOW DIAGRAM

THROUGH SPINDLE COOLANT (TSC) WARNINGS!

1. TSC REQUIRES TOOL HOLDER MTH THROUGH HOLE IN PULL STUD AND TOOL FALURE TO DO SO CAN FLOOD SPINDLE HEAD WTH COOLANT.
DO NOT RUN TSC WITH LOW COOLANT LEVEL IN TANK.
2. WEAR Safety glasses when manually changing tsc tools. coolant can spray out.
3. FAllure to check coolant tip wear regularly wil result in severe tool changer damage. SEE NOTE 4 UNDER MAINTENANCE SCHEDULE.
THROUGH SPINDLE COOLANT ALARMS
4. LOW THRU SPINDLE COOLANT (ALARM 151):

CAUSE: COOLANT PRESSURE IN SYSTEM FELL BELOW 40 PSI
A) CHECK FOR LOW COOLANT IN TANK, B) CHECK DIRT INDICATORS ON BOTH FILTERS, C) PRESS RESET AND RUN TSC AGAIN TO PURGE AIR FROM SYSTEM.
2. PRE-CHARGE FAlLURE (ALARM 198):

CAUSES: TOOL RELEASE PISTON DID NOT MOVE DOWN WHEN COMMANDED OR IT MOVED UP DURING TSC OPERATION, OR ANOTHER ALARM OCCURED DURING TSC OPERATON. A) CHECK FOR LOW AIR SUPPLY PRESSURE, B) CHECK FOR T.R.P. FAILURE.

IHROUGH SPINDLE COOLANT (TSC) MAINTENANCE SCHEDULE

1. TOP-OFF COOLANT TANK DALLY DURING HEAVY TSC USAGE
2. CHECK GAGE (G2) ON 100 MICRON FLTTER WITH TSC SYSTEM RUNNING AND NO TOOL IN SPINDIE CHANGE ELEMENT WHEN THE NDICATOR REACHES THE PED ZONE USE 100 MICRON FILTER ELEMENT (58-6045) OR COMMERCIALLY AVALABLE EOUIVALENT.
3. CLEAN PUMP INTAKE FLLTER WHEN INDICATOR (G1) IS IN RED ZONE. RESET WITH BUTTON.
4. CHECK COOLANT TIP WEAR EVERY 1000 HOURS OF TSC USE. FOLLOW INSTRUCTIONS UNDER HAINTENANCE IN THE OPERATRR'S MANUAL REPLACE COOLANT TIP IF TOOL PUSH-OUT IS 0.070 INCHES OR LESS. REPLACE COOLANT TIP AND SEAL HOUSING ASSY AT THE SAME TIME (TSC SERVICE KIT 93-9000A).

SPECIAL INSTRUCTIONS: AFTER CHANGING OR CLEANING FLLTER ELEMENTS, RUN TSC SYSTEM WTH NO TOOL IN SPINDIE FOR AT LEAST ONE MINUTE TO PURGE AIR.

ADJUSTA日LE TSC PARAMETER: PARAMETER 237 (TSC CLNT LINE PURGE) MINIMUM (DEFAULT) VALUE IS 2500, NO MAXIMUM LIMIT.

WARNING THE THROUGH SPINCLE COOLANT SYSTEM IS DESIGNED FOR METAL MACHNING USING WATER baSED COOLANTS ONLY. USE OF OLL MAY CAUSE HOSES TO SWELL, CRACK AND FAIL abrasive swarf from ceramic machining or grinding operations wll damage pump and coolant tip, and is not covered by warranty.
\qquad

ELEGTRIGAL SERVIGE

1. SOLENOIDS

Please read this section in its entirety before attempting to replace any solenoid assemblies.

1.1 Air Solenoid Assembly

REMOVAL -

1. Turn machine power on and raise spindle head to uppermost position. Turn power off.
2. Remove spindle head covers (Mechanical Service).
3. Remove air supply from machine.
4. Disconnect all air lines going to and from the air solenoid assembly on the bottom rear of the solenoid bracket. Do not remove the fittings --- remove the lines from the fittings.
5. Disconnect the two leads to the low air pressure sensor.
6. Unplug the wiring leading to the plug marked on the solenoid bracket as "880 FROM I/O PCB TO SOLENOID VALVES" and the plug marked "SPARE".

Figure 1-1. Air solenoid assembly.
7. Remove the SHCS holding the assembly to the bracket and remove the assembly.

INSTALLATION:

8. Replace the air solenoid assembly and attach to the bracket with the SHCS previously removed. Tighten securely.
9. Reconnect all air lines at this time, ensuring that all connections are tight and do not leak.
10. Reconnect the two leads to the low air pressure sensor.
11. Reconnect the wiring to the plugs on the solenoid bracket (see Step 6).
12. Reconnect air supply to the machine.

1.2 Tool Release Piston Assembly Air Solenoid

1. Turn machine power on and raise spindle head to uppermost position. Turn power off.
2. Remove spindle head covers (Mechanical Service).
3. Remove air supply from machine.
4. Remove the tool release piston assembly (Mechanical Service).
5. Unscrew the air solenoid assembly from the tool release piston assembly, taking care to not disturb the position of the clamp/unclamp switches.
6. Unscrew the air solenoid from the air solenoid assembly.

Figure 1-2. Tool release piston assembly with air solenoid assembly.
7. Install the new air solenoid on the air solenoid assembly. Reinstall the air solenoid assembly onto the tool release piston assembly. Take care to not disturb the position of the clamp/unclamp switches.
8. Reinstall the tool release piston assembly (Mechanical Service).
9. Ensure all air lines are reconnected to their proper fitting!

1.3 Spindle Lube Air Solenoid

1. Turn the machine power off and remove the air supply from the machine.

Figure 1-3. Front side of lube/air panel.
2. Disconnect the air lines from the spindle lube air solenoid assembly.
3. Unplug the electrical leads at the quick-disconnect. You will have to slide the wiring channel cover back to disconnect the leads.

Figure 1-4. Top view of spindle lube/air solenoid assembly.
4. Unscrew the assembly from the T-fitting.

Figure 1-5. Top view of spindle lube/air solenoid assembly.
5. Replace the assembly, ensuring it is approximately horizontal to the floor, and tighten fittings securely.

ELECTRICAL SERVICE
6. Reconnect all air lines.
7. Reconnect wiring leads at the quick-disconnect in the wiring channel. Slide cover back into place.
8. Restore air supply to the machine.

2. LINE VOLTAGE ADJUSTMENTS

Please read this section in its entirety before attempting to adjust the line voltage.

TOOLS REQUIRED

```
\(\checkmark\) Large flat tip screwdriver
```

\checkmark Digital voltmeter

ADJUSTING VOLTAGE -

NOTE: The machine must have air pressure at the air gauge or an interlock will prevent it from powering up.

CAUTION! Working with the electrical services required for the VMC can be extremely hazardous. The electrical power must be off and steps must be taken to ensure that it will not be turned on while you are working with it. In most cases this means turning off a circuit breaker in a panel and then locking the panel door. However, if your connection is different or you are not sure how to do this, check with the appropriate personnel in your organization or otherwise obtain the necessary help BEFORE you continue.

Abstract

WARNING! The electrical panel should be closed and the three screws on the door should be secured at all times except during installation and service. At those times, only qualified electricians should have access to the panel. When the main circuit breaker is on, there is high voltage throughout the electrical panel (including the circuit boards and logic circuits) and some components operate at high temperatures. Therefore extreme caution is required.

Figure 2-1. Control cabinet general overview.

1. Hook up the three power lines to the terminal on top of the main switch at upper right of electrical panel and the separate ground line to the ground bus to the left of the terminals. It is not necessary to be concerned with phase rotation (which wire is connected to L1, L2, and L3).

Figure 2-2. Power lines; hookup location.

NOTE: Make sure that the service wires actually go into the terminal-block clamps. [It is easy to miss the clamp and tighten the screw. The connection looks fine but the machine runs intermittently or has other problems, such as servo overloads.] To check, simply pull on the wires after the screws are tightened.
2. After the line voltage is connected to the machine, make sure that main circuit breaker (at top-right of rear cabinet) is off (rotate the shaft that connects to the breaker counterclockwise until it snaps off). Turn on the power at the source. Using an accurate digital voltmeter and appropriate safety procedures, measure the voltage between all three pair phases at the main circuit breaker and write down the readings. The voltage must be between 195 and 260 volts.

NOTE: wide voltage fluctuations are common in many industrial areas; you need to know the minimum and maximum voltage which will be supplied to the machine while it is in operation. U.S. National Electrical Code specifies that machines should operate with a variation of $+5 \%$ to -5% around an average supply voltage. If problems with the line voltage occur, or low line voltage is suspected, an external transformer may be required. If you suspect voltage problems, the voltage should be checked every hour or two during a typical day to make sure that it does not fluctuate more than $+5 \%$ or -5% from an average.

Figure 2-3. Transformer connections.

CAUTION! Make sure that the main breaker is set to OFF and the power is off at your supply panel BEFORE you change the transformer connections. Make sure that all three black wires are moved to the correct terminal block and that they are tight.
3. Check the connections on the transformer at the bottom-right corner of the rear cabinet. The three black wires labeled 74, 75 , and 76 must be moved to the terminal block triple which corresponds to the average voltage measured in Step 2 above. There are four positions for the input power to this transformer. The input voltage range for each terminal block is as follows:

Figure 2-4. Transformers with 195-210V (left) and 452-480V (right) range.
4. Set the main switch to on (rotate the shaft that engages the handle on the panel door clockwise until it snaps into the on position). Check for evidence of problems, such as the smell of overheating components or smoke. If such problems are indicated, set the main switch to off immediately and call the factory before proceeding.
5. After the power is on, measure the voltage across the upper terminals on the contactor K1 (located below the main circuit breaker. It should be the same as the measurements where the input power connects to the main breaker. If there are any.

Figure 2-5. Measure voltage here. problems, call the factory.
6. Check the DC voltage displayed in the second page of Diagnostic data on the CRT. It is labeled DC BUS. This voltage must be between 150 and 175 volts. If the voltage is outside these limits, turn off the
power and recheck the incoming power and the transformer wiring (repeat steps 2 and 3). If the voltage is still incorrect, turn off the power and call the factory.
7. Turn off the power (rotate the shaft that engages the handle on the panel door counterclockwise until it snaps into the off position). Also, set the main switch handle on the panel door to off. (Both the handle and the switch must be set to off before the door can be closed). Close the door, screw the screws into place, and turn the power back on.

3. FUSE REPLACEMENT

Please read this section in its entirety before attempting to replace any fuses.

3.1 Overvoltage Fuses

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light on the servo drive assembly goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

1. Turn machine power off.
2. Turn the main switch (upper right of electrical cabinet) to the off position.

Figure 3-1. Unscrew the three screws to open the cabinet door. (Control cabinets may require a key)
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.
4. On the POWER SUPPLY board there are three fuses located in a row at the upper right of the board; these are the overvoltage fuses. An orange light will be on to indicate the blown fuse(s).
5. Using a flat tip screwdriver, turn the fuse(s) counterclockwise to remove and replace the blown fuse(s) with ones having the same type and rating ($1 / 2 \mathrm{amp}$, type AGC, 250V).

CAUTION! When the left fuse is blown, it is still possible to operate the machine, thereby making an overvoltage situation possible. VERIFY absolute voltage to the machine does not exceed 260 volts.

3.2 Operator's Lamp Fuse

1. Turn the main switch (upper right of electrical cabinet) to the off position.
2. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.
3. The Operator's Lamp Fuse is located at the lower left of the Power Supply Board. An orange light will be on to indicate the blown fuse.

Figure 3-2. Power supply board; fuse locations.
4. Using a flat tip screwdriver, turn the fuse counterclockwise to remove and replace the blown fuse with ones having the same type and rating (operator's lamp:1/2 amp, type AGC, 250V).

3.3 Servo Driver \& SDIST Fuses

1. Turn the main switch (upper right of electrical cabinet) to the off position.
2. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.
3. On the SERVO DRIVE ASSEMBLY, there are three fuses on the SDIST panel, and three individual fuses on each of the SERVO DRIVE boards (See Fig. 3-3; the F3 fuses are not shown).
4. On the SDIST panel, use a flat tip screwdriver to turn the fuse(s) counterclockwise to remove. Replace the blown fuse(s) with ones having the same type and rating (FU1, FU2: $1 / 2 \mathrm{amp}$, type AGC, 250V; FU3: 5 amp, type ABC, 250V).
5. On each of the SERVO DRIVER boards, the fuses (F1, F2, F3) may be replaced by simply pulling out the fuses by hand and replacing with fuses of the same type and rating (F1, F2: 20 amp , type ABC, 250V; F3: 10 amp , type ABC, 250V).

Figure 3-3. Servo Drive Assembly; fuse locations

4. PCB REPLACEMENT

Please read this section in its entirety before attempting to replace any PCBs.

4.1 Microprocessor, MOCON (MOTIF) \& Video / Keyboard

NOTE: The arrangement of these boards may differ from the order of replacement that follows. The steps for replacement will only differ in which board may need to be removed before getting to the necessary board.

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light(s) on the servo amplifiers (servo drive assembly for brush machines) goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

MOCON (or MOTIF) BOARD -

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Turn machine power off.
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo amplifiers (servo drive assembly on brush machines) goes out before beginning any work inside the electrical cabinet.
4. Disconnect all leads to the Motor Controller (MOCON), or Motor Interface (MOTIF) board (for brush machines). Ensure all cables are properly labeled for reconnecting later.
5. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.

NOTE: If the VIDEO / KEYBOARD or PROCESSOR boards need replacing, please skip the next step.
6. Replace the MOCON (or MOTIF) board, attaching it to the VIDEO / KEYBOARD (beneath the MOCON / MOTIF board) with the standoffs.
7. Reconnect all leads (previously removed) to their proper connections.

VIDEO / KEYBOARD -

NOTE: Refer to "Cable Locations" for a diagram of this board.
8. Remove the MOCON (or MOTIF) board as described in Steps 1-5.
9. Disconnect all leads to the Video / Keyboard. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the Video / Keyboard.
10. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.

NOTE: If the PROCESSOR board need replacing, please skip the next step.
11. Replace the Video / Keyboard, attaching it to the PROCESSOR board (beneath the Video / Keyboard) with the standoffs.
12. Reconnect all leads (previously removed) to their proper connections.

PROCESSOR BOARD -

NOTE: Refer to "Cable Locations" for a diagram of this board.
13. Remove the MOCON (or MOTIF) board as described in Steps 1-5, and the Video / Keyboard as described in Steps 8-9.
14. Disconnect all leads to the Processor (68020) board. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the 68030 board.
15. After all cables have been disconnected, unscrew the standoffs, taking care to hold the board in place until all standoffs have been removed.
16. Replace the Processor (68030) board, attaching it to the electrical cabinet (beneath the 68030 board) with the standoffs.
17. Reconnect all leads (previously removed) to their proper connections.

4.2 Servo Driver \& SDIST

Abstract

WARNING! The electrical panel will have residual voltage, even after power has been shut off and/or disconnected. Never work inside this cabinet until the small red CHARGE light on the servo drive assembly goes out. The servo drive assembly is on the left side of the main control cabinet and about halfway down. This light is at the top of the circuit card at the center of the assembly. Until this light goes out, there are dangerous voltages in the assembly EVEN WHEN POWER IS SHUT OFF.

1. Turn machine power off.
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel. Wait until at least the red CHARGE light on the servo drive assembly goes out before beginning any work inside the electrical cabinet.

SDIST BOARD -

NOTE: Refer to "Cable Locations" for a diagram of this board.

4. Disconnect all leads to the Servo Distribution (SDIST) board. Ensure all cables are clearly marked for reconnecting later.

NOTE: The connection labeled "860A" on the board should be used for the cable marked "860B". Some boards, the connection for cable 920 has been incorrectly marked as
"1030". Please note its location for future reference.

NOTE: On some SDIST boards, there may be cables attached to the capacitors with a plastic strap. This will have to be cut off and the cables moved aside in order to remove the board. It will be necessary to replace this strap after the board is replaced.
5. After all cables have been disconnected, remove the eight screws attaching the board to the cabinet. Take care to hold the board in place until all screws have been removed.
6. Replace the SDIST board, attaching it with the eight screws previously removed, using one of the screws as a grounding connection.
7. Reconnect all leads (previously removed) to their proper connection.

SERVO DRIVER BOARDS -

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Follow all precautions noted previously before working in the electrical cabinet.
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
4. Disconnect all leads to the Servo Driver (DRIVER) board that you wish to replace. Ensure all cables are properly labeled for reconnecting later.

NOTE: When replacing any DRIVER board, it will be necessary to disconnect all leads on all DRIVER boards in order to remove or replace the board.
5. Remove the board by first removing the two screws that fasten it to the cabinet. Take care to hold the board in place until both screws have been removed.
6. Replace the DRIVER board, attaching it to the cabinet with the two screws previously removed.
7. Reconnect all leads to all boards at this time. Ensure the red and black leads go to the appropriate connections.

4.3 I/O BOARD

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Follow all precautions noted previously before working in the electrical cabinet.
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
4. Disconnect all leads to the Input/Output board and move aside for removal. Ensure all cables are
properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the I/O board.
5. Remove the board by first removing the twelve screws that fasten it to the cabinet. Take care to hold the board in place until all screws have been removed.
6. Replace the I/O board, attaching it to the cabinet with the twelve screws previously removed.
7. Reconnect all leads to the I/O board at this time.

4.4 Power \& Low Voltace Supply

POWER BOARD -

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Follow all precautions noted previously before working in the electrical cabinet (See warning at beginning of "Servo Driver \& SDIST" section).
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.
4. Disconnect all leads to the Power Distribution (POWER) board and move aside for removal. Ensure all cables are properly labeled for reconnecting later. The illustration on the following page shows all cable numbers and the locations on the POWER board.
5. After all cables have been disconnected, remove the seven screws holding the POWER board to the cabinet and remove the board. Take care to hold the POWER board in place until all screws have been removed.

NOTE: If you need to replace the LOW VOLTAGE POWER SUPPLY board, please skip the next step.
6. Replace the POWER board, attaching it with the seven screws previously removed. Don't forget to use the lower left screw for a ground connection.
7. Reconnect all cables to the POWER board at their proper location.

LOW VOLTAGE POWER SUPPLY -

8. Remove the Power Distribution (POWER) board as described in Steps 1-5.
9. Disconnect all leads to the Low Voltage Power Supply (LVPS) board. Ensure all cables are properly labeled for reconnecting later. The following illustration shows all cable numbers and the locations on the LVPS board.
10. After all cables have been disconnected, unscrew the two standoffs at the bottom of the board. Unscrew the remaining two screws at the top of the LVPS board, taking care to hold the board in place until all screws have been removed.
11. Replace the LVPS board, attaching it to the cabinet with the two screws and two standoffs previously removed.
12. Replace the POWER board as described in Steps 6-7.

4.5 RS-232 / 422

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Follow all precautions noted previously before working in the electrical cabinet (See warning at beginning of "Servo Driver \& SDIST" section).
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Using a large flat tip screwdriver, loosen the three screws on the cabinet door and then open the door enough to safely work on the electrical panel.

NOTE: It is suggested to make use of a step ladder high enough to allow you to work from the top of the electrical cabinet. It will be necessary, when replacing the RS-232 / 422 board, to work from the inside and outside of the cabinet at the same time.

* Serial interface replaces cable 700 with cable 700B.

Figure 4-1. RS-232 / 422 wiring pictorial (with serial keyboard).
4. On the left side of the cabinet, at the top of the side panel are two serial port connections labeled "SERIAL PORT \#1" and "SERIAL PORT \#2", SERIAL PORT \#1 being the upper connection.
5. To remove the RS-232 / 422 board, unscrew the two hex screws (on the exterior of the cabinet) holding the connector to the cabinet. From the inside of the cabinet, pull the connector through the panel, and disconnect the cable.
6. Replace the RS-232 / 422 board by first connecting the appropriate cable to the board (850 to SERIAL PORT \#1, 850A to SERIAL PORT \#2, then inserting the board (cable side up) through the left side panel. Attach with the two hex screws previously removed. Ensure the board for Serial Port \#1 is the upper connector and the board for Serial Port \#2 is the lower connector.
7. Replace the Serial Keyboard Interface (KBIF) board, using the four screws previously removed, starting at the top right. Attach the screw and standoff loosely, then all other screws and standoffs, until all are mounted. Tighten down completely.
8. Reconnect all cables to the Serial KBIF board at their proper locations.

5. FRONT PANEL

Please read this section in its entirety before attempting to replace any component of the control panel.

5.1 CRT Assembly Replacement

1. Turn the power off and disconnect power to the machine.
2. Remove the screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
3. At this time, remove the end cap on the support arm and unplug the white cable at the connection inside, then unplug the black cable at the connection in the control panel. It may be necessary to cut straps off the black cable's connector to unplug.
4. Unscrew the four hex nuts on the bottom row of the CRT bracket and remove, along with the washers. Set aside in a safe place.
5. While holding up the CRT assembly, remove the four hex nuts on the top row of the CRT bracket, along with the washers.

CAUTION! Take extreme care to not drop or damage the CRT assembly when removing from the control panel.
6. CAREFULLY pull the CRT assembly out toward the rear until it is clear of the control panel and all wiring. Set CRT assembly down in a safe place so as not to damage.
7. Replace by sliding the new assembly onto the eight bolts (four each on top and bottom). Starting with the bottom right, place the washers and hex nuts on the bolts to hold in place. Refer to Fig. 5-1 for the order of replacement.Once all washers have been attached and nuts have been hand-tightened, tighten down completely with the socket.

Figure 5-1. Interior of control panel (rear).
8. Plug the black cable and white cable into the matching cables. Feed the white cable through the opening in the top of the control panel.
9. Replace the back cover panel and attach with the four screws previously removed.

5.2 Jog Handle Replacement

The JOG handle is actually a 100 -line-per-revolution encoder. We use 100 steps per revolution to move one of the servoaxes. If no axis is selected for jogging, turning of the crank has no effect. When the axis being moved reaches its travel limits, the handle inputs will be ignored in the direction that would exceed the travel limits.

Parameter 57 can be used to reverse the direction of operation of the handle.

1. Turn the machine power off.
2. Remove the screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
3. Unplug the cable leading to the jog handle encoder. IMPORTANT! The blank pin side of the connector must face as shown in Fig. 5-2 when reconnecting; otherwise, damage may occur to the machine.

Figure 5-2. Jog handle encoder.
4. Using the $5 / 64^{\prime \prime}$ allen wrench, loosen the two screws holding the knob to the control panel and remove.

Figure 5-3. Jog Handle removal
5. Remove the three screws holding the jog handle encoder to the control panel and remove.
6. Replacement is reverse of removal. Keep in mind the important notice in Step 3.
5.3 Switch Replacement

NOTE: This section is applicable for the POWER ON, POWER OFF, EMERGENCY STOP, CYCLE START, and FEED HOLD switches.

1. Turn the machine power off.
2. Remove the four screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
3. Disconnect all leads to the switch's connectors. Ensure all leads are properly marked for reconnecting later. Refer to Fig. 5-1 for proper locations.
4. Unscrew the two small set screws, one on top and one on the bottom, and turn the switch counterclockwise to loosen. Separate from the front portion and pull out.
5. For replacement, screw the front and rear portions together (reverse of removal) and tighten down the two small set screws when the switch is properly positioned.

NOTE: The POWER ON, POWER OFF, and EMERGENCY STOP switches must all have the connectors on the bottom of the switch.
6. Reconnect all leads to the correct switch.

5.4 Spindle Load Meter Rieplacement

1. Turn the power off and disconnect power to the machine.
2. Remove the four screws holding the cover panel on the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
3. Disconnect the two leads at the back of the spindle load meter assembly. Ensure the two leads are properly marked for reconnecting later.
4. Unscrew the four screws that hold the spindle load meter assembly to the control panel. Take care to hold the assembly in place until all screws have been removed. Remove the assembly.
5. Installation is reverse of removal. Ensure leads go the correct location.

5.5 Keypad Replacement

1. Turn the power off and disconnect power to the machine.
2. Remove the four screws holding the rear cover panel to the back of the control panel. Take care to hold the cover panel in place until all screws have been removed.
3. Remove all switches, spindle load meter, and the jog handle as described in the previous sections.
4. Unplug the keypad's 24 -pin ribbon cable from the Keyboard Interface board.
5. Remove the screws from the front of the control panel. Take care to hold the front cover panel and bezel spacer in place until all screws have been removed. Remove the two pieces and set aside in a safe place.
6. Using a flat, blunt tool, such as putty knife, pry the keypad away from the control panel. Pull the ribbon cable through the opening in the control to remove.
7. To replace, first put the bezel spacer in place and fasten temporarily with screws in the top corners.

Figure 5-4. Keypad installation.
8. Insert the ribbon cable through the opening in the control panel and place the keypad in the upper right corner of the lower opening and press to the control panel to mount. Plug the ribbon cable into the Keyboard Interface board, taking care to not bend the pins on the board.
9. While holding the bezel spacer in place, remove the two screws holding the spacer, put the front cover panel in place, and fasten with all screws previously removed.
10. Reinstall all switches, spindle load meter, and the jog handle as described in the previous sections.
11. Replace the rear cover panel and fasten with the screws that were previously removed.

5.6 Serial Keyboard Interface (KBIF)

NOTE: Refer to "Cable Locations" for a diagram of this board.

1. Follow all precautions noted previously before working in the control cabinet (See warning at beginning of Section 5).
2. Turn the main switch (upper right of electrical cabinet) to the off position.
3. Remove the four screws on the back of the control box, then remove the cover panel. Take care to hold the panel in place until all screws have been removed.
4. Disconnect all leads to the Serial Keyboard Interface (KBIF) board. Ensure all cables are properly labeled for reconnecting later.
5. After all cables have been disconnected, unscrew the four screws holding the Serial KBIF board to the control box. Take care to hold the board in place until all screws have been removed. Place the screws and standoffs aside for later use.
6. Replace the Serial KBIF board, using the four screws previously removed, starting at the top right. Attach the screw and standoff loosely, then all other screws and standoffs, until all are mounted. Tighten down completely.
7. Reconnect all cables to the Serial KBIF board at their proper locations.
\qquad

6. SPINDLE ENGODER REPLAGEMENT

Please read this section in its entirety before attempting to remove or replace encoder.

REMOVAL -

1. Turn machine power on. Raise or lower spindle head to a position that will allow you to easily work on the encoder (must be above the enclosures). Turn machine off.
2. Remove head covers (Mechanical Service).
3. Disconnect the encoder cable at the top of the encoder.
4. Unscrew and remove the four 10-32 screws holding the encoder to the four standoffs (VF-1, VF-2, VF$3, \mathrm{VF}-4$) or mount ing bracket (VF-0). Remove the encoder, leaving the belt on the pulley at the orient ring.

INSTALLATION -

If you wish to install an encoder on a machine start at step 5; if this is just a replacement, skip to step 13. Please note the differences in installation between the VF-0, VF-1, VF-2, and the VF-3,VF-4.
5. For the VF-1, VF-2, and VF-3, VF-4, put some blue Loctite on the threads of the four set screws and screw approximately halfway into the standoffs. Screw the hex end of the set screws into the standoffs.
6. Screw the standoffs into the four holes located at the rear of the transmission's top plate.
7. For the VF-0, place the mounting bracket in place. Fasten to the top plate with the four screws and four lock washers.
8. Place the 18 -tooth pulley onto the pulley bushing and tighten down. Place the SHCS through the center axis of the pulley.
9. Screw this assembly into the spindle orientation ring.

Figure 6-1. Spindle encoder installation (VF-1/VF-2).
10. Place the 36 -tooth pulley onto the encoder, making the top of the pulley flush with the end of the shaft. Tighten down with the $5 / 64^{\prime \prime}$ hex wrench.
11. Unscrew the four screws and remove the cover panel on the box at the base of the flexible tube.
12. Feed the encoder cable through the flexible tube and connect at the plug in the box on top of the electrical cabinet.

Figure 6-2. VF-0 encoder installation.
13. Place the belt on the 36 -tooth pulley, then loop over the 18 -tooth pulley. Place the encoder assembly on the four standoffs (mounting bracket on the VF-0) and attach with the four 10-32 SHCS, placing the \#10 lock washers between the socket head and the encoder base.
14. Connect the encoder cable to the encoder assembly.

TEGHINIGAL REFERENGE

1. TOOL GHANGER

The tool changer is an all electric fixed shuttle type. Tools are always loaded through the spindle and should never be installed directly in the carousel in order to avoid crashes. The pocket open to the spindle must always be empty in the retracted position. All wiring to the tool changer goes through connector P6 on the side of the control cabinet.

The tool holders used are CT \#40 taper, V flange, commonly called "CT 40". For the 50 taper spindle option, the tool holders used are CT \#50 taper, V flange, commonly called "CT 50". Use A "45 Degree, P40T Type 1 (P50T Type 1 for 50 taper) inch threads" pull stud built to JMTBA standard "MAS 403-1982". This pull stud is characterized by a long shaft and a 45° shoulder under the head. Do not use the short shaft or pull studs with a sharp right angle $\left(90^{\circ}\right)$ head as they will not work and will cause serious damage.

Tool holders and pull studs must be in good condition and tightened together with wrenches or they may stick in the spindle taper. Clean the tool tapers with a lightly-oiled rag to leave a film to prevent rusting. Tools that make a loud bang when being released indicate a problem and should be checked before serious damage to the shuttle occurs. When the TOOL RELEASE button is pressed, the tool should be pushed out of the spindle by a small amount (approximately .07 "). This is an indication that the pull stud is correctly touching the release mechanism.

CAUTION! If machine is equipped with the optional $\mathbf{5 0}$ taper spindle, follow these guidelines:
> 25 lb . maximum per tool, and 300 lb . maximum total tool weight.
> Extremely heavy tool weights should be distributed evenly.
CAUTION! If machine is equipped with the optional 32 pocket tool changer, follow these guidelines:
> 12 lb . maximum per tool, and 200 lb . maximum total tool weight.
> Extremely heavy tool weights should be distributed evenly.
> Ensure there is adequate clearance between tools in the tool changer before running an automatic operation. This distance is $3.6^{\prime \prime}$ for 20 pocket, and is $3.4^{\prime \prime}$ for 32 pocket.

Low air pressure or insufficient volume will reduce the pressure applied to the tool unclamp piston and will slow down tool change time or will not release the tool.

If the shuttle should become jammed, the control will automatically come to an alarm state. To correct this, push the EMERGENCY STOP button and remove the cause of the jam. Push the RESET key to clear any alarms. Push the ZERO RETURN and the AUTO ALL AXES keys to reset the Z-axis and tool changer. Never put your hands near the tool changer when powered unless the EMERGENCY STOP button is pressed.

FU1 on the I/O PCB or the Power PCB is a fuse for the tool changer motors. It might be blown by an overload or jam of the tool changer. Operation of the tool changer can also be interrupted by problems with the tool clamp/unclamp and the spindle orientation mechanism. Problems with them can be caused by low air pressure or a blown solenoid circuit breaker CB4.

When a tool change operation is performed, the following sequence of events occurs:

1) Z axis moves up to machine zero,
2) If the spindle is turning, it is commanded to stop; coolant stopped,
3) Spindle oriented to Tool Changer,
4) Turn TSC pump off, (optional)
5) Pre-charge is on (40 taper spindle only),
6) Shuttle moves in to release tool,
7) Tool unclamps,
8) Z axis moves up,
9) Tool Changer rotates,
10) Z axis moves down,
11) Tool clamps,
12) Pre-charge off (40 taper spindle only),
13) Shuttle moves out.
14) TSC on (optional)

1.1 Tool Ghanger Lubrication

Place a few drops of lubricating grease on the outside edge of the Geneva wheel star and guide rails of the tool changer and run through all tools.

1.2 Shuttile In/Out Motob

A DC brush motor is used to move the tool changer assembly towards and away from the spindle. This is called the shuttle. The motor is geared down to a low RPM and then connected to an arm that rotates through 180° and pushes the shuttle in and out.

NOTE: This motor should never be disassembled.

1.3 Turbet Rotation Motor

A DC brush motor is used to rotate the tool turret between tool changes. This motor is geared down to a low RPM and connected to a Geneva mechanism. Each $1 / 2$ revolution (1 revolution for 20 pocket tool changer) of the Geneva mechanism moves the tool turret one tool position forward or backward.

NOTE: This motor should never be disassembled. TECHNICAL REFERENCE

Poct

2. TOOL GLAMPIUNGLAMP

The tool holder draw bar is held clamped by spring pressure. Air pressure is used to release the tool clamp. When the tool is unclamped, air is directed down the center of the spindle to clear the taper of water, oil, or chips. Tool unclamp can be commanded from a program, from the keyboard (but this is quite dangerous), and from the button on the front of the spindle head. The two manual buttons only operate in MDI or JOG modes.

2.1 Tool Glamp/Unclamp Air Solenoids

A single solenoid controls the air pressure to release the tool clamp. This corresponds to relay K15. When the relay is activated, 115 V AC is applied to the solenoid. This applies air pressure to release the tool. Relay K15 is on the I/O PCB. Circuit breaker CB4 will interrupt power to this solenoid.

2.2 Tool Glamp/Unclamp Sense Switches

There are two switches used to sense the position of the tool clamping mechanism. They are both normally closed and one will activate at the end of travel during unclamping and the other during clamping. When both switches are closed, it indicates that the drawbar is between positions.

A tool change operation will wait until the unclamped switch is sensed before the Z-axis pulls up from the tool. This prevents any possibility of breaking the tool changer or its support mounts.

The diagnostic display can be used to display the status of the relay outputs and the switch inputs.
The Precharge and Through the Spindle Coolant system applies low air pressure and releases the clamped switch (with 40 taper spindle only).

2.3 Remote Tool Unglamp Switch

The Remote Tool Unclamp switch is mounted on the front of the cover to the spindle head. It operates the same as the button on the keyboard. It must be held for $1 / 2$ second before the tool will be released and the tool will remain released for $1 / 2$ second after the button is released.

While the tool is unclamped, air is forced down the spindle to clear chips, oil, or coolant away from the tool holder.

3. SPINDLE OPERATION

Spindle speed functions are controlled primarily by the \boldsymbol{S} address code. The \boldsymbol{S} address specifies RPM in integer values from 1 to maximum spindle speed (Parameter 131). NOT TO BE CHANGED BY USER! When using the Through the Spindle Coolant option, the maximum spindle speed is 7500 RPM (5000 RPM for 50 taper spindles).

Speeds from S1 to the Parameter 142 value will automatically select low gear and speeds above Parameter 142 will select high gear. Two M codes, M41 and M42 can be used to override the gear selection. M41 for low gear and M42 for high gear. High gear operation below S100 may lack torque or speed accuracy. Spindle speed accuracy is best at the higher speeds and in low gear.

If there is no gear box in your machine (VF-0/E/OE) the gear box is disabled by parameters, it is always in high gear, and M41 and M42 commands are ignored.

The spindle is hardened and ground to the precise tool holder dimensions providing an excellent fit to the holder.

3.1 Spindle Orientation

Orientation of the spindle is automatically performed for tool changes and can be programmed with M19. Orientation is performed by turning the spindle slowly until an air pressure driven pin drops into a detent and locks the spindle in place. This pin is located behind the spindle motor and above the gear box. If the spindle is oriented and locked, commanding spindle forward or reverse will release the lock.

On machines equipped with a Haas vector drive, orientation is performed electrically and no shot pin or solenoid is required for locking the motor in place. Orientation of the spindle is automatically performed for tool changes and can be programmed with M19 commands. Orientation is performed by turning the spindle until the encoder reference is reached, the spindle motor holds the spindle locked in position. If the spindle is orientated and locked, commanding spindle forward or reverse will release the lock.

3.2 Spindle Orientation Lubrication

The spindle orientation mechanism does not require regular lubrication.

3.3 Spindle Orientation Air Solenoid (with Shot Pin Only)

A solenoid controls the air valve supplying pressure to the orientation lock pin. The diagnostic display can be used to display the status of the relay output and the switch inputs. Circuit breaker CB4 will interrupt power to this solenoid.

3.4 Spindle Orientation Sequence

When spindle orientation is commanded, the following sequence of operations occurs:

1) If the spindle is turning, it is commanded to stop,
2) Pause until spindle is stopped,
3) Spindle orientation speed is commanded forward,
4) Pause until spindle is at orientation speed,
5) (Vector Drive only) Spindle encoder rotates past a reference mark,
6) (Vector Drive only) The spindle drive stops and holds the spindle position at a parameter distance from the reference mark,
7) Command spindle lock air solenoid active,
8) Pause until spindle locked status is active and stable,
9) If not locked after time-out time, alarm and stop.

4. CONTROL PANEL

Figure 4-1. Control cabinet general overview.

Figure 4-2. Connectors on side of control cabinet.

5. BRUSHLESS SERVOS

5.1 SERVO Encoders

Haas machines are equipped with brushless motors, which provides for better performance, and no maintenance. In addition to the performance differences, these machines differ from brush type machines, which have already been discussed, in the following areas:

The brushless motors have 8192 line encoders built in, which result in differences in acceleration parameters $7,21,35,49$ and 157. The exponential accel/decel time is set by parameters 115, 116 and 168. "In Position" parameters 101, 102, 103, 104 and 165 also affect brushless motors.

The motor controller board has a dedicated processor which does all the servo control algorithm.
There is no servo distribution board anymore, therefore there is no CHARGE light present. Care should still be taken however, since there are high voltages present on the amplifiers, even when power is shut off. The high voltage comes from the spindle drive, which does have a CHARGE light.

The servo drive cards are replaced by Brushless Servo Amplifiers, and are controlled differently.

A low voltage power supply card is added to the servo drive assembly to supply the low voltage requirement to the amplifiers.

The CNC software is version 9.xx.

The user interface and motion profiling have not changed however, and the user should not see any functional differences between a brush type machine and a brushless machine.

5.2 Servo Gharacteristics

Servo characterstics are explained in detail in the previous chapter. The following is an example of how to achieve 130 inches/minute.

The exponential accel/decel time constant is set by Parameters 113,114,115,116 and 168. It has units of 0.0001 seconds. The speed limit at which exponential accel/decel is not available is defined by the relationship between Parameters 7 and 113 (for the X-axis). Thus if Parameter 7 is 8000000 steps/sec/sec and Parameter 113 is 375 (0.0375 seconds); the maximum velocity for accurate interpolation should be:

$8000000 \times 0.0375=300000$ steps $/$ second

For an 8192 line encoder and 6 mm screw, this would be:
$60 \times 300000 / 138718=130$ inches $/$ minute

5.3 Servo Amplifiers

NOTE: Refer to "Cable Locations" section for a diagram of the amplifiers.
The brushless servo amplifier is a PWM based current source. The PWM outputs control the current to a three phase brushless motor. The PWM frequency is 16 KHz . The amplifiers are current limited to 30 amps peak. However there are fuse limits both in hardware and software to protect the amplifiers and motors from over current. The nominal voltage for these amplifiers is 320 volts. Therefore the peak power is about 9600 watts or 13 H.P. The amplifiers also have short circuit and over temperature and over heat protection.

There is a 10 amp supply fuse for failure protection. This fuse is relatively slow, therefore it can handle the 30 amp peak. Actual continues current limit to the motor is controlled by software.

Commands to the amplifier are $+/-5$ volts current in two legs of the motor and a digital enable signal. A signal from the amplifier indicates drive fault or sustained high current in stalled motor.

The connectors on the amplifiers are:

+H.V.	+320 volts DC
-H.V.	320 volts return
A	motor lead phase A
B	motor lead phase B
C	motor lead phase C
J1	Three pin Molex connector used for $+/-12$ and GND. J2\quadEight pin Molex connector used for input signals.

6. INPUT/OUTPUT ASSEMBLY

The IOPCB contains a circuit for electronically turning the tool changer power on and off. This prevents any arcing of the tool changer relays and increases their life tremendously. This includes an adjustable current limit to the tool changer. Potentiometer R45 adjusts the current limit to the tool changer motors. R45 should be set to limit current to between four and six amps.

The IOPCB also contains a circuit for sensing a ground fault condition of the servo power supply. If more than 0.5 amps is detected flowing through the grounding connection of the 160 V DC buss, a ground fault alarm is generated and the control will turn off servos and stop.

Relay K6 is for the coolant pump 230V AC It is a plug-in type and is double-pole. Relays K9 through K12 are also plug in types for controlling the tool changer.

The Input/Output Assembly consists of a single printer circuit board called the IOPCB.
The connectors on the IOPCB are:
P1 16-pin relay drivers from MOCON 1 to 8 (510)
P2 16-pin relay drivers from MOCON 9 to 16 (520)
P3 16-pin relay drivers from MOCON 17 to 24 (M21-M24) (540)
P4 34-pin inputs to MOCON (550)
P5 Servo power on relay 1-1 (110)
P6 230V AC from CB3 (930)
P7 230V AC to coolant pump (940)
P8 Auto-off relay 1-7 (170)
P9 Spindle drive commands (710)
P10 Spindle fan and oil pump 115V AC (300)
P12 115V AC to spindle head solenoids (880A)
P13 Tool changer status inputs (820)
P14 Low TSC(900)
P15 Spindle head status inputs (890)
P16 Emergency stop input (770)
P17 Low Lube input (960)
P18 Over Voltage Input (970)
P19 Low Air Input (950)
P20 Overheat input (830)
P21 Spindle drive status inputs (780)
P22 M-FIN input (100)
P23 Remote Unclamp input (tool release) (190)
P24 Spare 2 (790)
P25 Spare 3 (200)
P26 Spare terminals for M21 to M24
P27 Door lock (1040)
P28 115V AC from CB4 (910)
P29 A-axis brake solenoid output (390)
P30 Tool changer shuttle motor output (810A)
P31 230 VAC for Chip Conveyor (160)
P33 115V AC three-phase input from power supply assembly (90)
P34 115V AC to CRT (90A)
P35 115V AC to heat exchanger (90B)
P36 115V AC to CB4 (90C)
P37 115V AC spare (870)
P38 Door open (1050)
P39 Tool changer turret motor output (810)
P40 (770A) A/B

P43 Ground fault sense signal input (1060) Axis Brake
P44 5TH axis brake (319)
P45 HTC Shuttle
P46 Chip Conveyor (140)
P47 Skip input signal (1070)
P48 spare 1
P49 spare 2
P50 Spigot Motor (200)
P51 16 PIN Relay drivers 17-24 (530)
P52 spare 1
P53 Spigot Sense (180)
P54 Servo Brake (350)
P55 Red/green lights (280)
P56 Thru spindle coolant pump(940A)
P57 115V spare
P58 115V spare

7. TWO-SPEED GEAR TRANSMISSION

The spindle head contains a two-speed gear transmission. The spindle motor is directly coupled to the transmission and the transmission is cog belt-coupled to the spindle.

7.1 Gear Box Lubrication

Gear Box: Mobil DTE 25 oil.
The gear box uses an oil sump and is cooled by gear oil. The VF-0/E/OE does not have a gearbox and is aircooled.

7.2 Gear Box Air Solenoids

There is a double solenoid valve controlling air to the gearbox shifter. This solenoid sends air to select either the high gear or the low gear. When power is removed from the solenoids, the valve remains in its last state. Air is always required to ensure the gears are held in either high of low gear. Circuit breaker CB4 will interrupt power to these solenoids. Power is left on the solenoid which is commanded last.

On machines equipped with a $\mathbf{5 0}$ taper spindle, an electric motor drives the gearbox shifter into high or low gear.

7.3 Gear Box Sense Switches

There are two switches in the gear box used to sense the position of the gears. One switch indicates HIGH by opening and the other indicates LOW by opening. Between gears, both switches are closed indicating a between-gear condition. The diagnostic display shows the status of these switches and the CURNT COMDS display shows which gear is selected. If the switches indicate that the gear box is between gears, the display will indicate "No Gear".

7.4 Gear Ghange Sequence

When a gear change is performed, the following sequence of events occurs:

1) If the spindle is turning, it is commanded to stop,
2) Pause until spindle is stopped,
3) Gear change spindle speed is commanded forward,
4) Pause until spindle is at speed,
5) Command high or low gear solenoid active,
6) Pause until in new gear or reversal time,
7) Alarm and stop if max gear change time elapsed,
8) If not in new gear, reverse spindle direction,
9) Turn off high and low gear solenoids

8. GONTROL PANEL

8.1 JOG HANDLE

The JOG handle is actually a 100 -line-per-revolution encoder. We use 100 steps per revolution to move one of the servo axes. If no axis is selected for jogging, turning of the crank has no effect. When the axis being moved reaches its travel limits, the handle inputs will be ignored in the direction that would exceed the travel limits.

Parameter 57 can be used to reverse the direction of operation of the handle.

8.2 Power On/Off Switches

The POWER ON switch engages the main contactor. The on switch applies power to the contactor coil and the contactor thereafter maintains power to its coil. The POWER OFF switch interrupts power to the contactor coil and will always turn power off. POWER ON is a normally open switch and POWER OFF is normally closed. The maximum voltage on the POWER ON and POWER OFF switches is 24 V AC and this voltage is present any time the main circuit breaker is on.

8.3 Spindle Load MEter

The Load meter measures the Ioad on the spindle motor as a percentage of the rated continuous power of the motor. There is a slight delay between a load and the actual reflection of the meter. The eighth A-to-D input also provides a measure of the spindle load for cutter wear detection. The second page of diagnostic data will display \% of spindle load. The meter should agree with this display within 5%. The spindle drive display \#7 should also agree with the load meter within 5%.

There are different types of spindle drive that are used in the control. They are all equivalent in performance but are adjusted differently.

8.4 Emergency Stop Switch

The EMERGENCY STOP switch is normally closed. If the switch opens or is broken, power to the servos will be removed instantly. This will also shut off the tool changer, spindle drive, and coolant pump. The EMERGENCY STOP switch will shut down motion even if the switch opens for as little 0.005 seconds.

Be careful of the fact that Parameter 57 contains a status switch that, if set, will cause the control to be powered down when EMERGENCY STOP is pressed.

You should not normally stop a tool change with EMERGENCY STOP as this will leave the tool changer in an abnormal position that takes special action to correct.

Note that tool changer alarms can be easily corrected by first correcting any mechanical problem, pressing RESET until the alarms are clear, selecting ZERO RETURN mode, and selecting "AUTO ALL AXES".

If the shuttle should become jammed, the control will automatically come to an alarm state. To correct this, push the EMERGENCY STOP button and remove the cause of the jam. Push the RESET key to clear any alarms. Push the ZERO RETURN and the AUTO ALL AXES keys to reset the Z-axis and tool changer. Never put your hands near the tool changer when powered unless the EMERGENCY STOP button is pressed.

8.5 Keyboand Beeper

There is a speaker inside the control panel that is used as an audible response to pressing keyboard buttons and as a warning beeper. The beeper is a one kHz signal that sounds for about 0.1 seconds when any keypad key, CYCLE START, or FEED HOLD is pressed. The beeper also sounds for longer periods when an auto-shut down is about to occur and when the "BEEP AT M30" setting is selected.

If the beeper is not audible when buttons are pressed, the problem could be in the keypad, keyboard interface PCB or in the speaker. Check that the problem occurs with more than one button and check that the speaker volume is not turned down.

9. MIGROPROCESSOR ASSEMBLY

The microprocessor assembly is in the rear cabinet at the top left position. It contains three large boards. They are: microprocessor, the keyboard and the MOCON. All three boards of the processor assembly receive power from the low voltage power supply. The three PCB's are interconnected by a local buss on dual 50pin connectors. At power-on of the control, some diagnostic tests are performed on the processor assembly and any problems found will generate alarms 157 or 158. In addition, while the control is operating, it continually tests itself and a self test failure will generate Alarm 152.

9.1 Migroprocessor PGB (68ECO30)

NOTE: Refer to "Cable Locations" section for a diagram of this board.
The Microprocessor PCB contains the 68 ECO 30 processor running at 40 MHz , one 128 K EPROM; between 256 K and 8 MB of CMOS RAM and betwen 512 K and 1 MB of FAST STATIC RAM. It also contains a dual serial port, a five year battery to backup RAM, buffering to the system buss, and eight system status LED's.

Two ports on this board are used to set the point at which an NMI* is generated during power down and the point at which RESET* is generated during power down.

The eight LED's are used to diagnose internal processor problems. As the system completes power up testing, the lights are turned on sequentially to indicate the completion of a step. The lights and meanings are:
$+5 \mathrm{~V} \quad+5 \mathrm{~V}$ logic power supply is present. (Normally 0 n)
If this light does not come on, check the low voltage power supply and check that all three phases of 230 V input power are present.

HALT Processor halted in catastrophic fault. (Normally Off)
If this light comes on, there is a serious problem with the processor PCB. Check that the EPROM is plugged in. Test the card with the buss connectors off.

POR Power-on-reset complete. (Normally On)
If this light does not come on, there is a serious problem with the processor PCB. Check that the EPROM is plugged in. Test the card with the buss connectors off.

SIO Serial I/O initialization complete. (Normally On)
If this light does not come on, there is a problem with the serial ports. Disconnect anything on the external RS-232 and test again.

MSG Power-on serial I/O message output complete. (Normally On)
If this light does not come on, there is a problem with serial I/O or interrupts. Disconnect anything on the external RS-232 and test again.

CRT CRT/VIDEO initialization complete. (Normally On)

If this light does not come on, there is a problem communicating with the VIDEO PCB. Check the buss connectors and ensure the VIDEO PCB is getting power.

PGM Program signature found in memory.(Normally On)

If this light does not come on, it means that the main CNC program package was not found in memory or that the auto-start switch was not set. Check that switch $\mathrm{S} 1-1$ is on and the EPROM is plugged in.

RUN PROGRAM RUNNING WITHOUT FAULT EXCEPTION.(Normally On)

If this light does not come on or goes out after coming on, there is a problem with the microprocessor or the software running in it. Check all of the buss connectors to the other two PCB's and ensure all three cards are getting power.

There 1 two-position DIP switch on the processor PCB labled S1. Switch S1-1 must be ON to auto-start the CNC operational program. If $\mathrm{S} 1-1$ is 0 FF , the PGM light will remain off.

Switch S2-1 is used to enable FLASH. If it is disabled it will not be possible to write to FLASH.
The processor connectors are:
J1 Address buss
J2 Data buss
J4 Serial port \#1 (for upload/download/DNC) (850)
J5 Serial port \#2 (for auxiliary 5th axis) (850A)
J3 Power connector
J6 Battery

9.2 Memory Retention Battery

The memory retention battery is initially soldered into the processor PCB. This is a 3.3V Lithium battery that maintains the contents of CMOS RAM during power off periods. Prior to this battery being unusable, an alarm will be generated indicating low battery. If the battery is replaced within 30 days, no data will be lost. The battery is not needed when the machine is powered on. Connector J6 on the processor PCB can be used to connect an external battery.

9.3 Video Keyboard with Floppy

NOTE: Refer to "Cable Locations" section for a diagram of this board.
The VIDEO and KB PCB generates the video data signals for the monitor and the scanning signals for the keyboard. In addition, the keyboard beeper is generated on this board. There is a single jumper on this board used to select inverse video. The video PCB connectors are:

P1	LOW VOLTAGE POWER SUPPLY PCB (860)
P3*	KEYBOARD INFO. (700)
P4	ADDRESS BUSS
P5	DATA BUSS
P10	FLOPPY DR. POWER
P11	SPARE
P12	FLOPPY DR. SIGNAL
P13	VIDEO SIGNAL (760)
J9	RS422 B
J13	SERIAL DATA (850)

9.4 Motor Interface PGB (MOTIF)

NOTE: Refer to "Cable Locations" section for a diagram of this board.
The Motor Interface PCB provides all of the interfaces to motors and discrete inputs and outputs. It contains a single pot R54 to adjust the output of the D-A converter. The MOTIF PCB connectors are:

P1 Data buss
P2 X drive control and overcurrent sense (610)
P3 Y drive control and overcurrent sense (620)
P4 Z drive control and overcurrent sense (630)
P5 A drive control and overcurrent sense (640)
P6 X-axis encoder, Z, home, and overheat (660)
P7 Y-axis encoder, Z, home, and overheat (670)
P8 Z-axis encoder, Z, home, and overheat (680)
P9 A-axis encoder, Z, home, and overheat (690)
P10 32 discrete inputs (550)
P11 Relay drives 1 to 8 (510)
P12 Relay drives 9 to 16 (520)
P13 Relay drives 17 to 24 (530)
P14 Relay drives 25 to 32 (540)
P15 Power connector ($+5,+12+$)
P16 D-to-A output and -12V DC (720)
P17 A-to-D inputs for DC buss voltage (980)
P18 Jog Crank input and aux 1,2 (750)
P19 Address buss
P20 Spindle encoder inputs (1000)
P21 A-to-D input for spindle temperature (1020)
P22 A-to-D input for spindle load monitor (730B)
P24 Home switch inputs X, Y, Z (990)

9.5 Моtor Controller (MOCON) - Brushless

NOTE: Refer to "Cable Locations" section for a diagram of this board.
The brushless machining centers are equipped with a microprocessor based brushless motor controller board (MOCON)that replaces the motor interface in the brush type controls. It runs in parallel with the main processor, receiving servo commands and closing the servo loop around the servo motors.

In addition to controlling the servos and detecting servo faults, the motor controller board, (MOCON), is also in charge of processing discrete inputs, driving the I/O board relays, commanding the spindle and processing the jog handle input. Another significant feature is that it controls 6 axes, so there is no need for an additional board for a 5 axis machine.

P1 Data Buss
P2 X amplifier control and fault sensing (610)
P3 Y amplifier control and fault sensing (620)
P4 Z amplifier control and fault sensing (630)
P5 A amplifier control and fault sensing (640)
P32 B amplifier control and fault sensing (640B)
P33 C amplifier control and fault sensing (640C)
P6 X encoder input (660)
P7 Y encoder input (670)
Z encoder input (680)
P9 A encoder input (690)
P30 B encoder input (690B)
P31 C encoder input (690C)
P18 Jog encoder input (750)
P20 Spindle encoder input (1000)
P10 Inputs from I/O board (550)
P11 I/O relays K1-8 (510)
P12 I/O relays K9-16 (520)
P13 I/O relays K17-24 (530)
P14 I/O relays K25-32 (540)
P15 Low Voltage Power (860)
P16 Spindle command output (720)
P19 Address bus
P24 Axis home switches (990)

10. SPINDLE DRIVE ASSEMBLY

The spindle drive is located in the main cabinet on the right side and halfway down. It has a blue cover on it. It operates from three-phase 200 to 240 V AC. It has a 7.5 (or 10) H.P. continuous rating, and a 11.25 (or 15) H.P. one-minute rating. The spindle drive is protected by CB1 at 40 amps (20 for High Voltage option). Never work on the spindle drive until the small red CHARGE light goes out. Until this light goes out, there are dangerous voltages inside the drive, even when power is shut off.

For all other data on the spindle drive, refer to the supplied documentation for your drive.

10.1 Haas Vegtor Drive

The vector drive is controlled by software and by the Spindle Drive Control Unit. The spindle drive control unit is loaded with the correct parameters required for proper operation. The system uses two encoders, one attached to the motor and the other attached to the spindle. The encoder attached to the spindle is used for orientation during tool changing, and the encoder attached to the motor is used to monitor all other operations. Spindle speed is more accurate at higher speeds and in low gear.

11. RESISTOR ASSEMBLY

The Resistor Assembly is located on top of the control cabinet. It contains the servo and/or spindle drive regen load resistors.

11.1 Spindle Daive Regen Resistor

A resistor bank is used by the spindle drive to dissipate excess power caused by the regenerative effects of decelerating the spindle motor. If the spindle motor is accelerated and decelerated again in rapid succession repeatedly, this resistor will get hot. In addition, if the line voltage into the control is above 255 V , this resistor will begin to heat. This resistor is overtemp protected at $100^{\circ} \mathrm{C}$. At that temperature, an alarm is generated and the control will begin an automatic shutdown. If the resistor is removed from the circuit, an alarm may subsequently occur because of an overvoltage condition inside the spindle drive.

11.2 Servo Daive Regen Resistor

A $25-\mathrm{ohm}, 300$-watt resistor is used by the brush-type servo drives to dissipate excess power caused by the effects of decelerating the servo motors. If the servo motors are accelerated and decelerated again in rapid succession repeatedly, this resistor will get hot. In addition, if the line voltage into the control is above 255 V ,
this resistor will begin to heat. This resistor is overtemp protected at $100^{\circ} \mathrm{C}$. At that temperature, an automatic control shutdown is begun. If that resistor is removed from the circuit, an alarm may subsequently occur because of an overvoltage condition for the servo buss.

11.3 Overheat Sense Switch

There is an overtemperature sense switch mounted near the above-mentioned regen resistors. This sensor is a normally-closed switch that opens at about $100^{\circ} \mathrm{C}$. It will generate an alarm and all motion will stop. After four minutes of an overheat condition, an automatic shutdown will occur in the control.

12. POWER SUPPLY ASSEMBLY

All power to the control passes through the power supply assembly. It is located on the upper right corner of the control cabinet.

12.1 Main Gibguit Breaker CB1

Circuit breaker CB1 is rated at 40 amps (20 for High Voltage option) and is used to protect the spindle drive and to shut off all power to the control. The locking On/Off handle on the outside of the control cabinet will shut this breaker off when it is unlocked. A trip of this breaker indicates a SERIOUS overload problem and should not be reset without investigating the cause of the trip. The full circuit breaker rating corresponds to as much as 15 horsepower.

12.2 Main Gontactor K1

Main contactor K1 is used to turn the control on and off. The POWER ON switch applies power to the coil of K1 and after it is energized, auxiliary contacts on K1 continues to apply power to the coil. The POWER OFF switch on the front panel will always remove power from this contactor.

When the main contactor is off, the only power used by the control is supplied through two $1 / 2$ amp fuses to the circuit that activates the contactor. An overvoltage or lightning strike will blow these fuses and shut off the main contactor.

The power to operate the main contactor is supplied from a 24 V AC control transformer that is primary fused at $1 / 2 \mathrm{amp}$. This ensures that the only circuit powered when the machine is turned off is this transformer and only low voltage is present at the front panel on/off switches.

12.3 Low Voltace Power Supply

The low voltage power supply provides +5 V DC, $+12 \mathrm{~V} D C$, and $-12 \mathrm{~V} D \mathrm{D}$ to all of the logic sections of the control. It operates from 115V AC nominal input power. It will continue to operate correctly over a 90V AC to 133 V AC range.

12.4 PowEr PCB (POWER)

NOTE: Refer to "Cable Locations" section for a diagram of this board.
The low voltage power distribution and high voltage fuses and circuit breakers are mounted on a circuit board called the POWER PCB. The following connectors are on it:

P1 Five-pin brings 230V AC three ph from main breaker
P2 On/Off connections to front panel (740)
P3 Coil and aux connections to contactor K1
P4 Auto-off connection to IOPCB (170)

P5 Low voltage control transformer to power K1
P6 230V AC from CB3 to coolant pump (930)
P7 115V AC from CB4 to IOPCB for solenoids (910)
P8 115V AC /T1 (90)
P9 Tool changer fuse circuit from FU5 to IOPCB (840)
P10 $+5 /+12 /$ Gnd form low volt supply to logic boards (860)
P11 $+5 /+12 /$ Gnd form low volt supply to logic boards (860)
P12 $+5 /+12 /$ Gnd form low volt supply to logic boards (860)
P13 $+5 /+12 /$ Gnd form low volt supply to logic boards (860)
P14 12V AC to operator's lamp (800A)
P15 230V AC from contactor K1 for coolant pump (70)
P16 Low voltage power from power supply
P17 +12V DC to IOPCB (860A)
P18 Not used
P19 Connector to op. lamp transformer T4 (290)
P20 115V AC to low voltage supply
P21-12V DC to processor PCB
P22-12V DC to MOTIF PCB
P26 +12V DC option connector
P27 +5/+12/Gnd form low volt supply to logic boards (860)
P30 12V AC OP Lamp (800)
P31 +12V (860A)
For older internal transformer with 208/230 taps:
TB1 230V AC from contactor K1
TB2 230V AC to T1 primary

12.5 Power-Up Low Voltage Gontrol Transformer (T5)

The low voltage control transformer, T5, supplies power to the coil of the main contactor K1. It guarantees that the maximum voltage leaving the Power Supply assembly when power is off is 12 V AC to earth ground. It is connected via P5 to the POWER PCB.

12.6 Secondary Gircuit Breakers

Three more circuit breakers are on the Power supply assembly.
CB2 controls the 115volt power from the main transformer to the servo transformers and, if tripped, will turn off the servo motors and air solenoids. CB2 could be blown by a severe servo overload.

CB3 controls the power to coolant pump only. It can be blown by an overload of the coolant pump motor or a short in the wiring to the motor.

CB4 controls the 115 V AC to the air solenoids, 4th axis brake, and the oiler. If tripped, it is likely caused by a short circuit in the wiring on the I/O assembly or the wiring to the solenoids on the spindle head.

12.7 Operator's Lamp Transformer

Transformer T4 supplies low voltage to the operator's lamp. The primary is 115 V AC and the secondary is 10 V AC. The primary is protected at $1 / 2$ amp by F6. It is connected to the POWER PCB by connector P19.

13. POWER TRANSFORMER ASSEMBLY (T1)

The power transformer assembly is used to convert three-phase 190/260V to three-phase 115 V and is primarily used by the servo drives. The video monitor, solenoids, fans, and oiler also use 115V AC. This transformer's maximum input voltage is 260 V @ 60 Hertz, and 240 V @ 50 Hertz. It is located in the main cabinet in the lower right corner. It is rated at 12 KVA and its primary is protected to 40 amps .

This transformer has four voltage connections that allow for a range of inputs from 195 V to 260 V . The transformer has an autotransformer primary to supply 240 V , three- phase to the spindle drives other 240 V applications.

Figure 13-1. Polyphase bank transformer.

13.1 Primafy Connection To T1

Input power to T1 is supplied through CB1, the 40 amp three-phase main circuit breaker. Three-phase 230 to T 1 is connected to the first three terminals of TB10.

13.2 Voltage Selection Taps

There are four labeled plastic terminal blocks. Each block has three connections for wires labeled 74, 75, and 76. Follow the instructions printed on the transformer.

13.3 Secondary Gonnection To T1

The secondary outputfrom T1 is 115 V AC three-phase CB2 protects the secondary of transformer T1 and is rated at 25 amps .

13.4 OPTIONAL 480 TRANSFORMER

Voltage Selection Taps for the 480 Transformer:
Right to left:

$$
353 \text { to } 376
$$

377 to 400
401 to 425
426 to 451
452 to 480^{*}

* 480 V transformer has additional terminal block

14. FUSES

The servo drive (DRIVER) cards have three fuses on each of the X, Y, Z, and A PCB's (F1, F2, F3). If these fuses are ever blown, the associated motor will stop. This will only happen if there is a failure of the drive card and the user should never attempt to replace these fuses.

The POWER PCB contains three $1 / 2$-amp fuses located at the top right (FU1, FU2, FU3). If the machine is subject to a severe overvoltage or a lightning strike, these fuses will blow and turn off all of the power. Replace these fuses only with the same type and ratings. The other two fuses protect the tool changer (FU5) and the operator's lamp (FU6).

On the servo drive assembly, there is a printed circuit board (SDIST) containing three one-amp fuses (FU1, FU2, FU3). Two of these fuses protect the contactor and small transformers. They are never expected to blow. The third fuse protects the regen load circuit load from shorts.

FUSE NAME	TYPE	RATING	VOLTAGE (amps)	LOCATION	
FU1	AGC	1/2	250 V	POWER pcb,	upper right
FU2	AGC	1/2	250 V		
FU3	AGC	1/2	250 V	" "	
FU6 (LAMP)	AGC	1/2	250 V	"	lower left
FU1	AGC	1/2	250 V	SDIST pcb,	right center
FU2	AGC	1/2	250 V		
FU3	AGC	5	250 V		top center
F1	ABC	20	250 V	${ }_{\text {N }}$ SDRIVER pcb's (X, Y, Z, A)	
F2	ABC	20	250 V		
F3	ABC	10	250 V	"	
FU1	ABC	5	250 V	I/O PCB	
FU2	ABC	5	250 V	I/O PCB	
FU3	ABC	5	250 V	$1 / 0$ PCB	
FU4	ABC	5	250 V	$1 / 0$ PCB	

15. SPARE USER M CODE INTERFACE

The M code interface uses outputs M21-24 and one discrete input circuit. M codes M21 through M24 will activate relays labled M21-24. These relay contacts are isolated from all other circuits and may switch up to 120 V AC at one amp. The relays are SPDT.

WARNING! Power circuits and inductive loads must have snubber protection.

The M-FIN circuit is a normally open circuit that is made active by bringing it to ground. The one M-FIN applies to all eight of the user M codes.

The timing of a user M function must begin with all circuits inactive, that is, all circuits open. The timing is as follows:

The Diagnostic Data display page may be used to observe the state of these signals.

15.1 M Function Relays

The IOPCB contains position for four relays (M21-M24) and all are available to the user. In addition, M21 is already wired out to P12 at the side of the control cabinet. This is a four-pin DIN connector and includes the M-FIN signal.

15.2 M-FIN DISGRETE InPut

The M-FIN discrete input is a low voltage circuit. When the circuit is open, there is $+12 \mathrm{~V} D \mathrm{C}$ at this signal. When this line is brought to ground, there will be about 10 milliamps of current. M-FIN is discrete input \#10 and is wired from input \#10 on the Inputs PCB on the Input/Output Assembly. The return line for grounding the circuit should also be picked up from that PCB. For reliability, these two wires should be routed in a shielded cable where the shield is grounded at one end only. The diagnostic display will show this signal a " 1 " when the circuit is open and a " 0 " when this circuit is grounded.

15.3 Turning M Functions On And Off

The eight optional M code relays can also be separately turned on and off using M codes M51-M54 and M61M64. M51 to M54 will turn on one of the eight relays and M61 to M64 will turn the relays off. M51 and M61 correspond to M21, etc.

16. LUBRICATION SYSTEM

The lubrication system is a resistance type system which forces oil through metering units at each of the 16 lubricating points within the machine. The system uses one metering unit at each of the lubricating points: one for each linear guide pad, one for each lead screw and one for spindle lubrication. A single oil pump is used to lubricate the system. The pump is powered only when the spindle and/or an axis moves. Once powered the pump cycles approximately 3.0 cc of oil every 30 minutes throughout the oil lines to the lube points. Every lube point receives approximately $1 / 16$ of the oil. The control monitors this system through an internal level switch in the reservoir and and external pressure switch on the lube panel.

The Maintenance Schedule gives information on maintaining the lubrication system.

16.1 Low Lubrication and Low Pressure Sense Switches

There is a low lube sense switch in the oil tank. When the oil is low, an alarm will be generated. This alarm will not occur until the end of a program is reached. There is also an lube pressure switch that senses the lube pressure. Parameter 117 controls the lube pressure check. If Parameter 117 is not zero, the lube pressure is checked for cycling high within that period. Parameter 117 has units of , $1 / 50$ seconds; so 30 minutes gives a value of 90000 . Parameter 57 , bit "Oiler on/off", indicates the lube pump is only powered when the spindle fan is powered. The lube pressure is only checked when the pump is on.

17. SWITCHES

17.1 Lamp On/Off Switch

An on/off switch is supplied for the operator's lamp. It is located on the side of the control cabinet below all of the motor connectors.

17.2 Door Open Sense Switch

The DOOR OPEN sense switch is a magnetic reed switch type and consists of two switches; one on each half of the enclosure front doors. These switches are normally closed and wired in series. When the doors open, one or both of these switches will open and the machine will stop with a "Door Hold" function. When the door is closed again, operation will continue normally.

The wiring for the door switches is routed through the front panel support arm and down through the top of the enclosure.

If the doors are open, you will not be able to start a program. Door Hold will not stop a tool change operation or a tapping operation, and will not turn off the coolant pump. Also, if the doors are open, the spindle speed will be limited to 750 RPM.

The Door Hold function can be temporarily disabled with by turning Setting 51 on, if Parameter 57 bits DOOR STOP SP and SAFETY CIRC are set to zero, but this setting will return to OFF when the control is turned off.

17.3 Limit Switches

[^1]CLAMP/UNCLAMP SWITCHES
[Tool Release Piston Assembly (2)]
There are two switches used to sense the position of the tool clamping mechanism. They are both normally closed and one will activate at the end of travel during unclamping and the other during clamping. When both switches are closed, it indicates that the draw bar is between positions.

A tool change operation will wait until the unclamped switch is sensed before the Z-axis pulls up from the tool. This prevents any possibility of breaking the tool changer or its support mounts.

The diagnostic display can be used to display the status of the relay outputs and the switch inputs.

SPINDLE ORIENT SWITCH

[Top rear of transmission]

NOTE: This switch does not exist on machines with a Vector Drive.
A normally-open switch that is held closed is used to sense when the pin drops in to lock the spindle. When the pin drops the switch opens, indicating orientation is complete.

The normally-closed side of the same switch that is held open, is wired to the spindle drive and commands it into a "Coast Stop" condition. This is done to ensure the spindle motor is not powered when the pin is locking the spindle.

X, Y, AND Z LIMIT SWITCHES

Prior to performing an POWER UP/RESTART or an AUTO ALL AXES operation, there are no travel limits. Thus, you can jog into the hard stops in either direction for X, Y, or Z. After a ZERO RETURN has been performed, the travel limits will operate unless an axis hits the limit switch. When the limit switch is hit, the zero returned condition is reset and an AUTO ALL AXES must be done again. This is to ensure that if you hit the limit switch, you can still move the servo back away from it.

The limit switches are normally closed. When a search for zero operation is being performed, the X, Y, and Z axes will move towards the limit switch unless it is already active (open); then they will move away from the switch until it closes again; then they will continue to move until the encoder Z channel is found. This position is machine zero.

Auto search for zero in the Z-axis is followed by a rapid move from the limit switch position down to the tool change position. This makes the Z-axis a little different from the other axes. The position found with the limit switch is not machine zero but is the position used to pull tools out of the spindle. Machine zero for Z is below this by Parameter 64. Be careful during the Z zero search and stay clear of that rapid move.

What Can Go Wrong With Limit Switches?

If the machine is operated without connector P5, a LOW LUBE and DOOR OPEN alarm will be generated. In addition, the Home search will not stop at the limit switch and will instead run into the physical stops on each axis.

If the switch is damaged and permanently open, the zero search for that axis will move in the negative direction at about $0.5 \mathrm{in} / \mathrm{min}$ until it reaches the physical travel stops at the opposite end of travel.

If the switch is damaged and permanently closed, the zero search for that axis will move at about $10 \mathrm{in} / \mathrm{min}$ in the positive direction until it reaches the physical stops.

If the switch opens or a wire breaks after the zero search completes, an alarm is generated, the servos are turned off, and all motion stops. The control will operate as though the zero search was never performed. The RESET can be used to turn servos on but you can jog that axis only slowly.

TOOL CHANGER POSITION SWITCHES

[Inside of Tool Carriage (2)]

GENEVA WHEEL POSITION MARK

The turret rotation mechanism has a switch mounted so that it is activated for about 30° of travel of the Geneva mechanism. When activated, this switch indicates that the turret is centered on a tool position. This switch is normally closed. The diagnostic display will show this status of this input switch as "TC MRK". A " 1 " indicates the Geneva wheel is in position.

TOOL \#1 SENSE SWITCH

The tool rotation turret has a switch that is activated when tool one is in position or facing towards the spindle. At POWER ON this switch can indicate that tool \#1 is in the spindle. If this switch is not active at power-on, the first tool change will rotate the turret until the switch engages and then move to the selected tool. The diagnostic display will show this status of this input switch as "TOOL \#1". A "1" indicates that tool \#1 is in position.

SHUTTLE IN/OUT SWITCHES

[Tool Changer Holding Plate (2)]
Two switches are used to sense the position of the tool changer shuttle and the arm that moves it. One switch is activated when the shuttle is moved full travel inward and one is activated when it is full travel outward. These switches are normally closed so that both will be closed between in and out. The diagnostic display will show this status of this input switch. A " 1 " indicates the associated switch is activated or open.

TRANSMISSION HIGH/LOW GEAR POSITION SWITCHES

[Bottom of Gearbox Assembly (2)]
There are two switches in the gear box used to sense the position of the gears. One switch indicates HIGH by opening and the other indicates LOW by opening. Between gears, both switches are closed indicating a between-gear condition. The diagnostic display shows the status of these switches and the CURNT COMDS display shows which gear is selected. If the switches indicate that the gear box is between gears, the display will indicate "No Gear".

> NOTE: The Transmission High/Low Gear Position Switches are located at the bottom of the Gearbox Assembly and are extremely difficult to reach. Removal of this assembly is necessary to replace these switches. See Mechanical Service for Spindle Motor and Transmission removal.

18. HYDRAULIG GOUNTERBALANCE

The spindle head weight is balanced by the upward pull of a hydraulic cylinder. The hydraulic oil forces the piston to retract into the cylinder body. The oil is then pressurized by a nitrogen resevoir. The system is self contained and passive (no pump is required to maintain the lift). Normal Z-Axis of the gas/oil counter balance has the initial pressure to balance the weight at full system volume, plus an additional $50-75$ psi overcharge for Iongevity.

19. DIAGNOSTIC DATA

The ALARM MSGS display is the most important source of diagnostic data. At any time after the machine completes its power-up sequence, it will either perform a requested function or stop with an alarm. Refer to Section 2.5 for a complete list of alarms, their possible causes, and some corrective action.

If there is an electronics problem, the controller may not complete the power-up sequence and the CRT will remain blank. In this case, there are two sources of diagnostic data; these are the audible beeper and the LED's on the processor PCB. If the audible beeper is alternating a $1 / 2$ second beep, there is a problem with the main control program stored in EPROM's on the processor PCB. If any of the processor electronics cannot be accessed correctly, the LED's on the processor PCB will or will not be lit.

If the machine powers up but has a fault in one of its power supplies, it may not be possible to flag an alarm condition. If this happens, all motors will be kept off and the top left corner of the CRT will have the message:

POWER FAILURE ALARM

and all other functions of the control will be locked out.
When the machine is operating normally, a second push of the PARAM/DGNOS key will select the diagnostics display page. The PAGE UP and PAGE DOWN keys are then used to select one of two different displays. These are for diagnostic purposes only and the user will not normally need them. The diagnostic data consists of 32 discrete input signals, 32 discrete output relays and several internal control signals. Each can have the value of 0 or 1 . In addition, there are up to three analog data displays and an optional spindle RPM display. Their number and functions are on the next page.

DISGRETE INPUTS / OUTPUTS

The inputs/outputs that are followed by an asterick (*) are active when equal to zero (0).
The inputs/outputs in parentheses (__) become SPARE when the Haas Vector Drive is enabled.

DISCRETE INPUTS

$\#$	Name	Description	$\#$	Name	Description
1000	TC IN	Tool Changer In	1016	(SP LOK)	Spindle Locked
1001	TC OUT	Tool Changer Out	1017	(SP FLT)	Spindle Drive Fault
1002	T ONE	At Tool One	1018	(SP ST*)	Spindle Not Stopped
1003	LO CNT	Low Coolant	1019	(SP AT*)	Spindle Not At Speed
1004	TC MRK	T.C. Geneva Mark	1020	LO OIL	Spindle/GB coolant Iow
1005	SP HIG	Spindle In High	1021	spare1	
1006	SP LOW	Spindle In Low	1022	spare2	
1007	EM STP	Emergency Stop	1023	Spare3	
1008	DOOR S	Door Open Switch	1024	UNCLA*	Remote tool unclamp
1009	M-FIN*	Not M Func Finish	1025	LOPHSE	Low voltage in phase 1
1010	OVERVT	Not Over Voltage	1026	Spare4	
1011	LO AIR	Low Air Pressure	1027	Spare5	
1012	LO LUB	Low Lube Oil	1028	GR FLT	Ground fault
1013	OVRHT	Not Over Heat	1029	SKIP	Skip Signal
1014	DB OPN	Tool Unclamped	1030	SPIGOT	
1015	DB CLS	Tool Clamped	1031	CNVEYR	Conveyor overload

DISCRETE OUTPUTS

$\#$	Name	Description	$\#$	Name	Description
1100	SRV PO	Servo Power On	1116	SPGCW	Spigot clockwise
1101	(SP FOR)	Spindle Forward	1117	SPGCCW	Spigot counter/clockwise
1102	(SP REV)	Spindle Reverse	1118	spare	
1103	(SP RST)	Spindle Reset	1119	PURGE	TSC Purge
1104	4TH BK	4th Axis Brk Rel	1120	PRE-CH	Pre-charge
1105	COOLNT	Coolant Pump	1121	HTC SH	Horizontal T.C. shuttle
1106	AUT OF	Auto Turn Off	1122	5TH BK	5th Axis Brake
1107	SP FAN	Spind Motor Fan	1123	DOOR L	Door Lock
1108	TC IN	Tool Changer In	1124	M21	
1109	TC OUT	Tool Changer Out	1125	M22	
1110	TC CW	Tool Changer CW	1126	M23	
1111	TC CCW	Tool Changer CCW	1127	AUXCLT	Auxiliary Coolant
1112	SP HIG	Spindle High Gear	1128	GRNBCN	Red beacon worklight
1113	SP LOW	Spindle Low Gear	1129	REDBCN	Red beacon worklight
1114	T UNCL	Tool Unclamped	1130	CNVENA	Conveyor enabled
1115	(SP LOK)	Spindle Lock Cmd	1131	CNVREV	Conveyor reverse

The inputs are numbered the same as the connections on the inputs printed circuit board.

The second page of diagnostic data is displayed using the PAGE UP and PAGE DOWN keys. It contains:

INPUTS 2

Name	Description	Name	Description
X Z CH	X-axis Z Channel	X DRVF	X-axis drive fault
Y Z CH	Y-Axis Z Channel	Y DRVF	Y-axis drive fault
Z Z CH	Z-axis Z Channel	Z DRVF	Z-axis drive fault
A Z CH	A-axis Z Channel	A DRVF	A-axis drive fault
B Z CH	B-axis Z Channel	B DRVF	B-axis drive fault
X HOME	X-axis Home/Lim Switch	X CABL	Broken cable to X encoder
Y HOME	Y-axis Home	Y CABL	Broken cable to Y encoder
Z HOME	Z-axis Home	Z CABL	Broken cable to Z encoder
A HOME	A-axis Home	A CABL	Broken cable to A encoder
B HOME	B-axis Home	B CABL	Broken cable to B encoder
X OVRH	X Motor OverTemp	S Z CH	Spindle Z Channel
Y OVRH	Y Motor OverTemp		
Z OVRH	Z Motor OverTemp		
A OVRH	A Motor OverTemp		
B OVRH	B Motor OverTemp		

The following inputs and outputs pertain to the Haas Vector Drive. If it is not enabled, these will display a value of *. Otherwise, it will display a 1 or 0.

HAAS VECT	Haas Vector Drive Enabled Sp FWD
Spindle Forward	
SP REV	Spindle Reverse
SP LOK	Spindle Lock Commanded
AT SPD*	Spindle at Speed
SP STP*	Spindle Stopped
SP FLT	Spindle Fault
SP LKD	Spindle is Locked

ANALOG DATA

Name

DC BUSS uP TEMP

SP LOAD
SP SPEED
RUN TIME
TOOL CHANGES
VER X.XXX
YY/MM/DD
MDL VF_-

Description

Voltage from Haas Vector Drive (if equipped)
Microprocessor enclosure temperature (displayed only when Parameter 278 bit "uP ENCL TEMP" is set to 1)
Spindle load in \%
Spindle RPM CW or CCW
Total machine run time
Number of tool changes
Software version number
Today's date
Machine model
technical reference

PARAMETERS

Parameters are seldom-modified values that change the operation of the machine. These include servo motor types, gear ratios, speeds, stored stroke limits, lead screw compensations, motor control delays and macro call selections. These are all rarely changed by the user and should be protected from being changed by the parameter lock setting. If you need to change parameters, contact HAAS or your dealer. Parameters are protected from being changed by Setting 7.

The Settings page lists some parameters that the user may need to change during normal operation and these are simply called "Settings". Under normal conditions, the parameter displays should not be modified. A complete list of the parameters is provided here.

The PAGE UP, PAGE DOWN, up and down cursor keys, and the jog handle can be used to scroll through the parameter display screens in the control. The left and right cursor keys are used to scroll through the bits in a single parameter.

Parameter List

Parameter $1 \quad X$ SWITCHES
Parameter 1 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

REV ENCODER
REV POWER REV PHASING DISABLED
Z CH ONLY
AIR BRAKE
DISABLE Z T
SERVO HIST
INV HOME SW
INV Z CH
CIRC. WRAP.
NO I IN BRAK
LOW PASS +1X
LOW PASS +2X
OVER TEMP NC
CABLE TEST
Z TEST HIST
SCALE FACT/X

INVIS AXIS
ROT ALM LMSW
ROT TRVL LIM
UNDEFINED
UNDEFINED
UNDEFINED
TORQUE ONLY
3 EREV/MREV
2 EREV/MREV
NON MUX PHAS
BRUSH MOTOR
LINEAR DISPL

Used to reverse the direction of encoder data. Used to reverse direction of power to motor. Used to reverse motor phasing. Used to disable any axis.
With A only, indicates that no home switch. With A only, indicates that air brake is used. Disables encoder Z test (for testing only). Graph of servo error (for diagnostics only). Inverted home switch (N.C. switch). Inverted Z channel (normally high).
(Future Option - Not Yet Implemented) With A only, causes 360 wrap to return to 0 .
With A only, removes I feedback when brake is active.
Adds 1 term to low pass filter.
Adds two terms to low pass filter.
Selects a normally closed overheat sensor in motor.
Enables test of encoder signals and cabling.
History plot of Z channel test data.
If set to 1 , the scale ratio is interpreted as divided by
X; where X depends on bits SCALE/X LO and SCALE/X HI.
Used to create an invisible axis.
Rotary alarms at the limit switch.
Rotary travel limits are used.

For HAAS only.
For HAAS only.
For HAAS only.
Not currently used.
Enables the brushless motor option.
This bit changes the display from degrees to inches (or millimeters) on the A and B axes.
SERVICE MANUAL
With SCALE/X HI bit, determines the scale factor used in bit
SCALE FACT/X,
With SCALE/X LO bit, determines the scale factor used in bit
SCALE FACT/X. See below:

HI	LO	
0	0	3
0	1	5
1	0	7
1	1	9

Parameter	2	X	P GAIN Proportional gain in servo loop.
Parameter	3	X	D GAIN Derivative gain in servo loop.
Parameter	4	X	I GAIN Integral gain in servo loop.
Parameter	5	X	RATIO (STEPS/UNIT) The number of steps of the encoder per unit of travel. Encoder steps supply four (4) times their line count per revolution. Thus, an 8192 line encoder and a 6 mm pitch screw give: $8192 \times 4 \times 25.4 / 6=138718$
Parameter	6	X	MAX TRAVEL (STEPS) Max negative direction of travel from machine zero in encoder steps. Does not apply to A-axis. Thus, a 20 inch travel, 8192 line encoder and 6 mm pitch screw give: $20.0 \times 138718=2774360$
Parameter	7	X	ACCELERATION Maximum acceleration of axis in steps per second per second.
Parameter	8	X	MAX SPEED Max speed for this axis in steps per second.
Parameter	9	X	MAX ERROR Max error allowed in servo loop before alarm is generated. Units are encoder steps.
Parameter	10	X	FUSE LEVEL Fuse level in \% of max power to motor. Applies only when motor in motion.
Parameter	11	X	BACK EMF Back EMF of motor in volts per 1000 RPM times 10. Thus a 63 volt/KRPM motor gives 630 .
Parameter	12	X	STEPS/REVOLUTION Encoder steps per revolution of motor. Thus, an 8192 line encoder gives: $8192 \times 4=32768$
Parameter	13	X	BACKLASH Backlash correction in encoder steps.

Parameter	14	X	DEAD ZONE Dead zone correction for driver electronics. Units are 0.0000001 seconds
Parameter	15	Y	SWITCHES See Parameter 1 for description.
Parameter	16	Y	P GAIN See Parameter 2 for description.
Parameter	17	Y	D GAIN See Parameter 3 for description.
Parameter	18	Y	I GAIN See Parameter 4 for description.
Parameter	19	Y	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	20	Y	MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	21	Y	ACCELERATION See Parameter 7 for description.
Parameter	22	Y	MAX SPEED See Parameter 8 for description.
Parameter	23	Y	MAX ERROR See Parameter 9 for description.
Parameter	24	Y	FUSE LEVEL See Parameter 10 for description.
Parameter	25	Y	BACK EMF See Parameter 11 for description.
Parameter	26	Y	STEPS/REVOLUTION See Parameter 12 for description.
Parameter	27	Y	BACKLASH See Parameter 13 for description.
Parameter	28	Y	DEAD ZONE See Parameter 14 for description.
Parameter	29	Z	SWITCHES See Parameter 1 for description.
Parameter	30	Z	P GAIN See Parameter 2 for description.
Parameter	31	Z	D GAIN See Parameter 3 for description.
Parameter	32	Z	I GAIN See Parameter 4 for description.

PARAMETERS			
Parameter	33	Z	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	34	Z	MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	35	Z	ACCELERATION See Parameter 7 for description.
Parameter	36	Z	MAX SPEED See Parameter 8 for description.
Parameter	37	Z	MAX ERROR See Parameter 9 for description.
Parameter	38	Z	FUSE LEVEL See Parameter 10 for description.
Parameter	39	Z	BACK EMF See Parameter 11 for description.
Parameter	40	Z	STEPS/REVOLUTION See Parameter 12 for description.
Parameter	41	Z	BACKLASH See Parameter 13 for description.
Parameter	42	Z	DEAD ZONE See Parameter 14 for description.
Parameter	43	A	SWITCHES See Parameter 1 for description AND make sure that this parameter is set to enable the fourth axis before you try to enable the fourth axis from settings.
Parameter	44	A	P GAIN See Parameter 2 for description.
Parameter	45	A	D GAIN See Parameter 3 for description.
Parameter	46	A	I GAIN See Parameter 4 for description.
Parameter	47	A	RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	48	A	MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	49	A	ACCELERATION See Parameter 7 for description.
Parameter	50	A	MAX SPEED See Parameter 8 for description.
Parameter	51	A	MAX ERROR See Parameter 9 for description.

Parameter	52	A	FUSE LEVEL See Parameter 10 for description.
Parameter	53	A	BACK EMF See Parameter 11 for description.
Parameter	54	A	STEPS/REVOLUTION See Parameter 12 for description
Parameter	55	A	BACKLASH See Parameter 13 for description.
Parameter	56	A	DEAD ZONE See Parameter 14 for description.

Parameters 57 through 128 are used to control other machine dependent functions. They are:

Parameter 57 COMMON SWITCH 1

Parameter 57 is a collection of general purpose single bit flags used to turn some functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

REV CRANK	Reverses direction of jog handle.
DISABLE T.C.	Disables tool changer operations.
DISABLE G.B.	Disables gear box functions.
POF AT E-STP	Causes power off at EMERGENCY STOP.
RIGID TAP	Indicates hardware option for rigid tap.
REV SPIN ENC	Reverses sense direction of spindle encoder.
REPT RIG TAP	Selects repeatable rigid tapping.
EX ST MD CHG	Selects exact stop in moves when mode changes.
SAFETY CIRC.	This enables safetet hardware, if machine is so equipped.
SP DR LIN AC	Selects linear deceleration for rigid tapping. o is quadratic.
PH LOSS DET	When enabled, will detect a phase loss.
COOLANT SPGT	Enables coolant spigot control and display.
OVER T IS NC	Selects control over temp sensor as N.C.
SKIP OVERSHT	Causes Skip (G31) to act like Fanuc and overshoot sense point.
NONINV SP ST	Non-inverted spindle stopped status.
SP LOAD MONI	Spindle load monitor option is enabled.
SP TEMP MONI	Spindle temperature monitor option is enabled.
ENA ROT \& SC	Enables rotation and scaling.
ENABLE DNC	Enables DNC selection from MDI.
ENABLE BGEDT	Enables BACKGROUND EDIT mode.
ENA GRND FLT	Enables ground fault detector.
KEYBD SHIFT	Enables use of keyboard with shift functions.
ENABLE MACRO	Enables macro functions.
INVERT SKIP	Invert sense of skip to active low=closed.
HANDLE CURSR	Enable use of jog handle to move cursor.
NEG WORK OFS	Selects use of work offsets in negative direction.
SPIN COOLANT	Enables spindle low oil pressure detection.
ENA CONVERSE	Enables conversational programming.
OILER ON/VFF	Enables oiler power when servos or spindle is in motion.
NC OVR VOLT	Inverts sense of over voltage signal.
UNUSED	
DOOR STOP SP	Enables functions to stop spindle and manual operations at door switch.

Parameter	58	LEAD COMPENS SHIFT Shift factor when applying lead screw compensation. Lead screw compensation is based on a table of 256 offsets; each $+1-127$ encoder steps. A single entry in the table applies over a distance equal to two raised to this parameter power encoder steps.
Parameter	59	MAX FEED RATE (INCH) Maximum feed rate in inches per minute.
Parameter	60	TURRET START DELAY Maximum delay allowed in start of tool turret. Units are milliseconds. After this time, an alarm is generated.
Parameter	61	TURRET STOP DELAY Maximum delay allowed in motion of tool turret. Units are milliseconds. After this time, an alarm is generated.
Parameter	62	SHUTTLE START DELAY Maximum delay allowed in start of tool shuttle. Units are milliseconds. After this time, an alarm is generated.
Parameter	63	SHUTTLE STOP DELAY Maximum delay allowed in motion of tool shuttle. Units are milliseconds. After this time, an alarm is generated.
Parameter	64	Z TOOL CHANGE OFFSET On Vertical mills: For Z-axis; displacement from home switch to tool change position and machine zero. About 4.6 inches, so for an 8192 line encoder this gives: $4.6 \times 138718=638103$
		On Horizontal mills, this parameter is not used. It should be set to zero.
Parameter	65	NUMBER OF TOOLS Number of tool positions in tool changer. This number must be set to the machine's configuration. The maximum number of tool positions is 32 .
Parameter	66	SPINDLE ORI DELAY Maximum delay allowed when orienting spindle. Units are milliseconds. After this time, an alarm is generated.
Parameter	67	GEAR CHANGE DELAY Maximum delay allowed when changing gears. Units are milliseconds. After this time, an alarm is generated.
Parameter	68	DRAW BAR MAX DELAY Maximum delay allowed when clamping and unclamping tool. Units are milliseconds. After this, time an alarm is generated.
Parameter	69	A AIR BRAKE DELAY Delay provided for air to release from brake on A-axis prior to moving. Units are milliseconds.
Parameter	70	MIN SPIN DELAY TIME Minimum delay time in program after commanding new spindle speed and before proceeding. Units are milliseconds.

June 1997	\qquad		
	Parameter	71	DRAW BAR OFFSET Offset provided in motion of Z-axis to accommodate the tool pushing out of the spindle when unclamping tool. Units are encoder steps.
	Parameter	72	DRAW BAR Z VEL UNCL Speed of motion in Z-axis to accommodate tool pushing out of the spindle when unclamping tool. Units are encoder steps per second.
	Parameter	73	SP HIGH G/MIN SPEED Command speed used to rotate spindle motor when orienting spindle in high gear. Units are maximum spindle RPM divided by 4096. This parameter is not used in machines equipped with a Haas vector drive.
	Parameter	74	SP LOW G/MIN SPEED Command speed used to rotate spindle motor when orienting spindle in low gear. Units are maximum spindle RPM divided by 4096. This parameter is not used in machines equipped with a Haas vector drive.
	Parameter	75	GEAR CHANGE SPEED Command speed used to rotate spindle motor when changing gears. Units are maximum spindle RPM divided by 4096.
	Parameter	76	LOW AIR DELAY Delay allowed after sensing low air pressure before alarm is generated. Alarm skipped if air pressure returns before delay. Units are $1 / 50$ seconds.
	Parameter	77	SP LOCK SETTLE TIME Required time in milliseconds that the spindle lock must be in place and stable before spindle orientation is considered complete.
	Parameter	78	GEAR CH REV TIME Time in milliseconds before motor direction is reversed while in a gear change.
	Parameter	79	SPINDLE STEPS/REV Sets the number of encoder steps per revolution of the spindle. Applies only to rigid tapping option.
	Parameter	80	MAX SPIN DELAY TIME The maximum delay time control will wait for spindle to get to commanded speed or to get to zero speed. Units are milliseconds.
	Parameter	81	M MACRO CALL 09000 M code that will call 09000 . Zero causes no call.
	Parameter	82	M MACRO CALL 09001 same as 81
	Parameter	83	M MACRO CALL 09002 same as 81
	Parameter	84	M MACRO CALL 09003 same as 81
	Parameter	85	M MACRO CALL 09004 same as 81
	Parameter	86	M MACRO CALL 09005 same as 81
	Parameter	87	M MACRO CALL 09006 same as 81
	Parameter	88	M MACRO CALL 09007 same as 81
	Parameter	89	M MACRO CALL 09008 same as 81
	Parameter	90	M MACRO CALL 09009 same as 81
	Parameter	91	G MACRO CALL 09010 G code that will call 09010. Zero causes no call.

Parameter	92	G MACRO CALL 09011 same as 91
Parameter	93	G MACRO CALL 09012 same as 91
Parameter	94	G MACRO CALL 09013 same as 91
Parameter	95	G MACRO CALL 09014 same as 91
Parameter	96	G MACRO CALL 09015 same as 91
Parameter	97	G MACRO CALL 09016 same as 91
Parameter	98	G MACRO CALL 09017 same as 91
Parameter	99	G MACRO CALL 09018 same as 91
Parameter	100	G MACRO CALL 09019 same as 91
Parameter	101	IN POSITION LIMIT X How close motor must be to endpoint before any move is considered complete when not in exact stop (G09 or G61). Units are encoder steps.
Parameter	102	IN POSITION LIMIT Y Same definition as Parameter 101.
Parameter	103	IN POSITION LIMIT Z Same definition as Parameter 101.
Parameter	104	IN POSITION LIMIT A Same definition as Parameter 101.
Parameter	105	X MAX CURRENT Fuse level in \% of max power to motor. Applies only when motor is stopped.
Parameter	106	Y MAX CURRENT Same definition as Parameter 105.
Parameter	107	Z MAX CURRENT Same definition as Parameter 105.
Parameter	108	A MAX CURRENT Same definition as Parameter 105.
Parameter	109	D*D GAIN FOR X Second derivative gain in servo loop.
Parameter	110	D*D GAIN FOR Y Second derivative gain in servo loop.
Parameter	111	D*D GAIN FOR Z Second derivative gain in servo loop.
Parameter	112	D*D GAIN FOR A Second derivative gain in servo loop.
Parameter	113	X ACC/DEC T CONST Exponential acceleration time constant. Units are $1 / 10000$ seconds. This parameter provides for a constant ratio between profiling lag and servo velocity. It is also the ratio between velocity and acceleration.
Parameter	114	Y ACC/DEC T CONST Same definition as Parameter 113

Parameter	115	Z ACC/DEC T CONST Same definition as Parameter 113
Parameter	116	A ACC/DEC T CONST Same definition as Parameter 113
Parameter	117	LUB CYCLE TIME If this is set nonzero, it is the cycle time for the lube pump and the Lube pressure switch option is checked for cycling in this time. It is in units of 1/50 seconds.
Parameter	118	SPINDLE REV TIME
Parameter	119	Time in milliseconds to reverse spindle motor.
Parameter		

Parameter	132	SPIN. Y TEMP. COEF. This parameter controls the amount of correction to the Y-axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.
Parameter	133	SPIN. Z TEMP. COEF. This parameter controls the amount of correction to the Z-axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.
Parameter	134	X EXACT STOP DIST.
Parameter	135	Y EXACT STOP DIST.
Parameter	136	Z EXACT STOP DIST.
Parameter	137	A EXACT STOP DIST. These parameters control how close each axis must be to its end point when exact stop is programmed. They apply only in G09 and G64. They are in units of encoder steps. A value of 34 would give $34 / 138718=0.00025$ inch.
Parameter	138	X FRICTION FACTOR
Parameter	139	Y FRICTION FACTOR
Parameter	140	Z FRICTION FACTOR
Parameter	141	A FRICTION FACTOR These parameters compensate for friction on each of the four axes. The units are in 0.004 V .
Parameter	142	HIGH/LOW GEAR CHANG This parameter sets the spindle speed at which an automatic gear change is performed. Below this parameter, low gear is the default; above this, high gear is the default.
Parameter	143	DRAW BAR Z VEL CLMP This parameter sets the speed of the Z-axis motion that compensates for tool motion during tool clamping. Units are in encoder steps per second.
Parameter	144	RIG TAP FINISH DIST This parameter sets the finish tolerance for determining the end point of a rigid tapping operation.
Parameter	145	X ACCEL FEED FORWARD
Parameter	146	Y ACCEL FEED FORWARD
Parameter	147	Z ACCEL FEED FORWARD
Parameter	148	A ACCEL FEED FORWARD These parameters set the feed forward gain for the axis servo. They have no units.
Parameter	149	PRE-CHARGE DELAY This parameter sets the delay time from pre-charge to tool release. Units are milliseconds.
Parameter	150	MAX SP RPM LOW GEAR Max spindle RPM in low gear.
Parameter	151	B SWITCHES See Parameter 1 for description.
Parameter	152	B P GAIN See Parameter 2 for description.
Parameter	153	B D GAIN See Parameter 3 for description.

Parameter	154	B I GAIN See Parameter 4 for description.
Parameter	155	B RATIO (STEPS/UNIT) See Parameter 5 for description.
Parameter	156	B MAX TRAVEL (STEPS) See Parameter 6 for description.
Parameter	157	B ACCELERATION See Parameter 7 for description.
Parameter	158	B MAX SPEED See Parameter 8 for description.
Parameter	159	B MAX ERROR See Parameter 9 for description.
Parameter	160	B FUSE LEVEL See Parameter 10 for description.
Parameter	161	B BACK EMF See Parameter 11 for description.
Parameter	162	B STEPS/REVOLUTION See Parameter 12 for description.
Parameter	163	B BACKLASH See Parameter 13 for description.
Parameter	164	B DEAD ZONE See Parameter 14 for description.
Parameter	165	IN POSITION LIMIT B Same definition as Parameter 101.
Parameter	166	B MAX CURRENT Same definition as Parameter 105.
Parameter	167	D*D GAIN FOR B Second derivative gain in servo loop
Parameter	168	B ACC/DEC T CONST Same definition as Parameter 113.
Parameter	169	B PHASE OFFSET See Parameter 121 for description.
Parameter	170	B GRID OFFSET See Parameter 125 for description.
Parameter	171	B EXACT STOP DIST. See Parameters 134 for description.
Parameter	172	B FRICTION FACTOR See Parameter 138 for description.

Parameter	173	B ACCEL FEED FORWARD Same description as Parameter 145.
Parameter 174	SPINDLE B TEMP. COEF.	
This parameter controls the amount of correction to the B-axis in response to heating		
of the spindle head. It is 10 times the number of encoder steps per degree F.		

The C-axis parameters (176-200) are used to control the Haas Vector Drive. Parameter 278 bit HAAS VECT DR must be set to 1 for these parameters to be available.

Parameter	176	C SWITCHES See Parameter 1 for description.
Parameter	177	C P GAIN See Parameter 2 for description.
Parameter	178	C D GAIN See Parameter 3 for description.
Parameter	179	C I GAIN See Parameter 4 for description.
Parameter	180	C SLIP GAIN The value that the slip rate would assume at maximum speed and maximum current.
Parameter	181	C MIN SLIP The minimum value allowed for the slip rate.
Parameter	182	C ACCELERATION See Parameter 7 for description.
Parameter	183	C MAX FREQ The frequency at which the motor will be run when maximum spindle RPM is commanded.
Parameter	184	C MAX ERROR The maximum allowable error (in Hz) between commanded spindle speed and actual speed. If set to zero, it will default to $1 / 4$ of Parameter 183.
Parameter	185	C FUSE LEVEL See Parameter 10 for description.
Parameter	186	C DECELERATION Maximum deceleration of axis in encoder steps per second per second.
Parameter	187	C HIGH GEAR STEPS/REV The number of encoder steps per revolution of the motor when the transmission is in high gear. If the machine does not have a transmission, this is simply the number of encoder steps per revolution of the motor.

Parameter	188	C ORIENT GAIN The proportional gain used in the position control loop when performing a spindle orientation.
Parameter	189	C BASE FREQ This is the rated frequency of the motor.
Parameter	190	C HI SP CURR LIM At speeds higher than the base frequency, the maximum current that is applied to the motor must be reduced.
Parameter	191	C MAX CURRENT Same definition as Parameter 105.
Parameter	192	C MAG CURRENT This is the magnetization component of the current in the motor, also called the flux or field current.
Parameter	193	C SPIN ORIENT MARGIN When a spindle orientation is done, if the actual position of the spindle is within this value (plus or minus), the spindle will be considered locked. Otherwise, the spindle will not be locked.
Parameter	194	C SP STOP SPEED The spindle is considered to be stopped (discrete input SPST* $=0$) when the speed drops below this value. Units are encoder steps/millisecond.
Parameter	195	C START/STOP DELAY This delay is used at the start of motion to magnetize the rotor before accelera tion starts.
Parameter	196	C ACCEL LIMIT LOAD This is the \% Ioad limit during acceleration.
Parameter	197	C RESERVED
Parameter	198	C RESERVED
Parameter	199	C RESERVED
Parameter	200	C RESERVED
Parameter	201	X SPINDLE TEMP. COEF. This parameter controls the amount of correction to the X -axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.
Parameter	202	X AIR BRAKE DELAY This parameter is not used.
Parameter	203	Y AIR BRAKE DELAY This parameter is not used.
Parameter	204	Z AIR BRAKE DELAY This parameter is not used.
Parameter	205	A SPINDLE TEMP. COEF. This parameter controls the amount of correction to the A-axis in response to heating of the spindle head. It is 10 times the number of encoder steps per degree F.

RED BEACON

CONVY DR OVRD

DSBL CLNT IN DSC INP PR RMT TOOLS RLS FLOPPY ENABL TCR KEYPAD MCD RLY BRD

TSC ENABLE

AUX JOG NACC ALISM PRGRST DSBL JOG TST
AIR DR @ M24 UNDEFINED PRDY @ Y160

SPNDL NOWAIT
When (1) user relay M26 is used to flash a beacon. The beacon flashes if the control is experiencing an alarm or emergency stop condition.

When (1) the conveyor will continue to run with the door open. When (0) the conveyor will stop when the door is open, but will resume when the door is closed. For safety it is recommended that the bit be set to (0).

If set to 1 low coolant input will not be used.
Discrete pallet rotate/part ready; inputs enabled if set to 1 .
If set to 1 , allows use of remote tool release button on spindle head.
If set to 1 , enables the optional floppy drive.
If set to 1 , enables tool changer restore button on keypad.
If set to 1 , adds 8 additional relays, for a total of 40 . These additional relays (M21-M28) become available on a secondary board, and are shown on the discrete outputs page.

When set to 1, "DSBL CLNT IN" bit is ignored, and TSC will operate. When set to zero, the control functions normally.

Does not allow accumulation on auxiliary axis jog. Alias M codes during program restart. Disables the encoder test for the jog handle. Used on horizontal mills only.

Used on horizontal mills only.
When (1), the machine will not wait for the spindle to come up to speed immediately after an M03 or M04 command. Instead, it will check and/ or wait for the spindle to come up to speed immediately before the next interpolated motion is initiated. This bit does not affect rigid tapping or the TSC option.

Parameter $210 \quad \mathrm{X}$ TOOL CHANGE OFFSET
This parameter is not used.
Parameter $211 \quad$ Y TOOL CHANGE OFFSET
On Horizontal mills: For Y-axis; displacement from the home position to tool change position.

On Vertical mills, this parameter is not used.
Parameter $212 \quad$ A TOOL CHANGE OFFSET
This parameter is not used.
Parameter 213 B TOOL CHANGE OFFSET
This parameter is not used.
Parameter 214 RESERVED
Parameter $215 \quad$ CAROUSEL OFFSET
Parameter used to align tool 1 of tool changing carousel precisely. Units are encoder steps.

Parameter 216 CNVYR RELAY DELAY
Delay time in $1 / 50$ seconds required on conveyor relays before another action can be commanded. Default is 5 .
$\left.\begin{array}{ll}\text { Parameter 217 } & \text { CNVYR IGNORE OC TIM } \\ \text { Amount of time in 1/50 seconds before overcurrent is checked after conveyor motor is } \\ \text { turned on. Default is 50. }\end{array}\right\}$

Parameter 232	A LEAD COMP 10E9 This parameter sets the A -axis lead screw compensation signed parts per billion.
Parameter 233	B LEAD COMP 10E9 This parameter sets the B-axis lead screw compensation signed parts per billion.
Parameter 235	TSC PISTON SEAT With the TSC option, the amount of time given for the piston to seat during system start-up. The default is 500 milliseconds. If machine has a 50 Taper spindle and the TSC option, this parameter must be set to 0 .
Parameter 236	TSC LOW PR FLT After the TSC system has stabilized following startup, Alarm 151 is generated if coolant pressure falls below 40 psi for the amount of time set in this parameter. The default is 1000 milliseconds. (1200 msec for VF-6/8).
Parameter 237	TSC CLNT LINE PURGE The amount of time given for the coolant to purge when the TSC system is shut off. The default is 2500 milliseconds.
Parameter 238	MAX TSC SPINDLE RPM When Through the Spindle Coolant (TSC) is enabled and in use, this parameter limits the maximum spindle speed. The default is 7500 RPM.
Parameter 239	SPNDL ENC STEPS/REV This parameter sets the number of encoder steps per revolution of the spindle encoder.
Parameter 240	C AXIS MAX TRAVEL This parameter sets the C -axis maximum travel in the positive direction.
Parameter 241	U AXIS MAX TRAVEL This parameter sets the U-axis maximum travel in the positive direction.
Parameter 242	V AXIS MAX TRAVEL This parameter sets the V -axis maximum travel in the positive direction.
Parameter 243	W AXIS MAX TRAVEL This parameter sets the W -axis maximum travel in the positive direction.
Parameter 244	C AXIS MIN TRAVEL This parameter sets the C -axis minimum travel in the negative direction.
Parameter 245	U AXIS MIN TRAVEL This parameter sets the U-axis minimum travel in the negative direction.
Parameter 246	V AXIS MIN TRAVEL This parameter sets the V -axis minimum travel in the negative direction.
Parameter 247	W AXIS MIN TRAVEL This parameter sets the W -axis minimum travel in the negative direction.
Parameter 255	CONVEYOR TIMEOUT The amount of time (in minutes) the conveyor will operate without any machine motion or keyboard action. After this time, the conveyor will automatically shut off.

Parameter 256	PALLET LOCK INPUT Used in horizontal mills only.
Parameter 257	SPINDL ORIENT OFSET If the machine is equipped with a spindle vector drive (as set in bit 7 of Parameter 278), this bit sets the spindle orientation offset. The offset is the number of encoder steps between the Z pulse and the correct spindle orientation position.
Parameter 258	LS PER INCH The number of steps on the linear scale per inch of travel.
Parameter 259	LS PER REV The number of steps between Z pulses on the linear scale.
Parameter 266	X SWITCHES Parameter 266 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:
	X LIN SCALE EN Used to enable linear scales for the X axis. X INVRT LN SCL Used to invert the X-axis linear scale. X DSBL LS ZTST Used to disable the linear scale Z test.
Parameter 267	Y SWITCHES Parameter 267 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:
	Y LIN SCALE EN Used to enable linear scales for the Y axis. Y INVRT LN SCL Used to invert the Y-axis linear scale. Y DSBL LS ZTST Used to disable the linear scale Z test.
Parameter 268	Z SWITCHES Parameter 268 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:
	Z LIN SCALE EN Used to enable linear scales for the Z axis. Z INVRT LN SCL Used to invert the Z-axis linear scale. Z DSBL LS ZTST Used to disable the linear scale Z test.
Parameter 269	A SWITCHES Parameter 269 is a collection of single-bit flags used to turn servo related functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:
	A LIN SCALE EN Used to enable linear scales for the A axis. A INVRT LN SCL Used to invert the A-axis linear scale. A DSBL LS ZTST Used to disable the linear scale Z test.
Parameter 271	C SWITCHES Parameter 271 is a collection of single-bit flags used to turn servo related functions on and off. This parameter is not used when machine is equipped with a Haas vector drive. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

PARAMETERS

C LIN SCALE EN Used to enable linear scales for the C axis.
C INVRT LN SCL Used to invert the C-axis linear scale. C DSBL LS ZTST Used to disable the linear scale Z test.

Parameter 278 COMMON SWITCH 3
Parameter 278 is a collection of general purpose single bit flags used to turn some functions on and off. The left and right cursor arrows are used to select the function being changed. All values are 0 or 1 only. The function names are:

INVERT G.B.

DPR SERIAL
CK PALLET IN
CK HIDN VAR
DISPLAY ACT
TSC PRG ENBL
RESERVED
SPND DRV LCK
RESERVED CNCR SPINDLE

RESERVED
HAAS VECT DR
uP ENCL TEMP

HAAS RJH

SPIN TEMP NC

This bit allows an alternate gearbox configuration. It inverts the sense of the gearbox inputs.

Causes the main serial inputs/outputs to go through the floppy video board.
This bit is used on horizontal mills only.
This bit is used on horizontal mills only.
When set to 1 , displays the actual spindle speed on the Current Commands display page.
Enables purge output on TSC option.
Reserved for later use.
This bit must be set to 1 if machine is equipped with a vector spindle drive.
Reserved for later use.
(Concurrent Spindle) When set to 1, the spindle will be commanded to start concurrently with other commands in the same block. In the following example, with this bit set to 1 , the spindle will start at the same time as the feed:

G1 X-1. F1. S7500 M3;

Reserved for later use.
(Haas Vector Drive) This bit must be set to 1 if machine is equipped with a HAAS vector spindle drive. When set to 1 , voltage to the Haas vector drive is displayed in the diagnostics display as DC BUSS.
(Microprocessor Enclosure Temperature) When set to 1, the enclosure temperature will be displayed on INPUTS2 screen of the diagnostics display.
(Haas Remote Jog Handle) This bit must be set to 1 if the machine is equipped with a Haas 5-Axis Remote Jog Handle.
(Spindle Temperature Sensor Normally Closed) This bit specifies the type (normally open or normally closed) of the spindle temperature sensor. This bit should be set to 1 for machines with a Haas vector drive, and 0 for machines that do not have a vector drive.

Parameter 294 MIN BUSS VOLTAGE
This parameter specifies the minimum Haas Vector Drive buss voltage. When a Haas Vector Drive is installed, it should be set to 200 volts. Otherwise, it should be set to zero. Alarm 160 will be generated if the voltage falls below this value.

Lead Scriew Compensation

Separate lead screw compensation is provided for each of the \mathbf{X}, \mathbf{Y}, and \mathbf{Z} axes. The operator-entered compensation values are spaced at 0.5 inch intervals within the machine coordinate system. The compensation values are entered in inches with a resolution of 0.0001 inch. The operator entered values are used to interpolate into a table of 256 entries. The spacing between two entries in the table of 256 is defined by Parameter 58. The entered values are limited to $+/-127$ encoder steps; so the limit in inches is dependent on Parameters 5, 19, and 33.

Note that the first entry corresponds to machine position zero and subsequent entries are for increasingly negative positions in the machine coordinate system. The user should not ever need to adjust the lead screw compensation tables.

MAINTENANGE SGHEDULE

The following is a list of required regular maintenance for the HAAS VF-Series Vertical Machining Centers. Listed are the frequency of service, capacities, and type of fluids required. These required specifications must be followed in order to keep your machine in good working order and protect your warranty.

INTERVAL	MAINTENANCE PERFORMED
DAILY	$\checkmark \quad$ Check coolant level (especially during heavy TSC usage). $\checkmark \quad$ Check way lube lubrication tank level. \checkmark Clean chips from way covers and bottom pan. \checkmark Clean chips from tool changer. $\checkmark \quad$ Wipe spindle taper with a clean cloth rag and apply light oil.
WEEKLY	Check Through the Spindle Coolant (TSC) filters. Clean or replace element if needed. Check automatic dump air line's water trap for proper operation. On machines with the TSC option, clean the chip basket on the coolant tank. Remove the tank cover and remove any sediment inside the tank. Be careful to disconnect the coolant pump from the controller and POWER OFF the control before working on the coolant tank. Do this MONTHLY for machines without the TSC option. \checkmark Check air gauge/regulator for 85 psi . $\checkmark \quad$ For machines with the TSC option, place a dab of grease on the V-flange of tools. Do this MONTHLY for machines without the TSC option. \checkmark Check air filter at top of spindle motor. \checkmark Clean exterior surfaces with mild cleaner. DO NOT use solvents. \checkmark Check the hydraulic counterbalance pressure according to the machine's specifications.
MONTHLY	Check oil level in gear box. For 40 taper spindles: Remove inspection cover beneath spindle head. Add oil slowly from top until oil begins dripping from overflow tube at bottom of sump tank. For 50 taper spindles: Check oil level in sightglass. Add from side of gearbox if necessary. Inspect way covers for proper operation and lubricate with light oil, if necessary. $\checkmark \quad$ Dump the oil drain bucket. $\checkmark \quad$ Place a dab of grease on the outside edge of the Geneva wheel star and guide rails of the tool changer and run through all tools.
SIX MONTHS	\checkmark Replace coolant and thoroughly clean the coolant tank. $\checkmark \quad$ Check all hoses and lubrication lines for cracking.
ANNUALLY	Replace the gearbox oil. Drain the oil from the bottom of the gearbox. Remove inspection cover beneath spindle head. Add oil slowly from top until oil begins dripping from overflow tube at bottom of sump tank. For 50 taper spindles, add oil from the side of the transmission. \checkmark Check oil filter and clean out residue at bottom of filter. \checkmark Replace air filter on control box every (2) years.

TSC MAINTENANGE

(Top off the coolant tank DAILY during heavy TSC usage.
(Refer to the next section, and check gauge (G2) on 100 micron filter with TSC system running and no tool in the spindle. Change element when the indicator reaches the red zone. Use 100 micron filter element (58-6045) or commercially available equivalent.
[Clean pump intake filter when indicator (G1) is in red zone. Reset with button.
[Check coolant tip wear every 1000 hours of TSC use. Follow instructions on setting the drawbar height in the following section. Replace coolant tip if tool push-out is 0.070 " or less. Replace coolant tip and seal housing assembly at the same time (TSC Service kit 93-9000A).

SPECIAL INSTRUCTIONS:
After changing or cleaning filter elements, run TSC system with no tool in spindle for at least one minute to purge air.

LUBRIGATION GHART

SYSTEM:	WAY LUBE AND PNEUMATICS	TRANSMISSION	COOLANT TANK
LOCATION	Under the control panel at the rear of the machine	Above the spindle head	Side of machine
DESCRIPTION	Piston pump with 30-minute cycle time. Pump is only on when spindle is turning or when axis is moving.		Lransmission only
LUBRICATES	Linear guides and ball nuts	40 taper 2-QT 50 taper 36 02.	80 Gallons (VF 6 -10)
QUANTITY	$\mathbf{1 . 5 \text { QT. Tank }}$Mobil DTE 25		
LUBRICANT	Mobil Vactra \#2	Water soluble, synthetic	

TSC Maintenance

— Check dirt indicator on 100 micron filter with TSC system running and no tool in the spindle. Change element when the indicator reaches the red zone.
[On newer machines, clean pump intake filter when indicator is in red zone. Reset indicator with button. All intake filters can be cleaned with a wire brush.
[After changing or cleaning filter elements, run TSC system with no tool in spindle for at least one minute to prime system.

Figure 1. TSC coolant pump assembly.

Figure 2. Cleaning the intake filter.

CHECKING DRAWBAR HEIGHT

The drawbar height must be checked every 6 months or 1000 hours of TSC system use. This is done to check for wear on the Coolant Tip. CAUTION! Failure to check coolant tip wear regularly will result in tool changer damage.

Tools Required

\checkmark Machined aluminum block (2" x 4" x 4")
 \checkmark Tool holder (without a tool)

1. Place a sheet of paper under the spindle for table protection, then place a machined block of aluminum (approximately $2 " \times 4 " \times 4$ ") on the paper (Figure 3).
2. POWER ON the VMC. Insert a tool holder WITHOUT ANY TYPE OF CUTTER into the spindle taper.
3. Go to the HANDLE JOG mode. Choose Z-axis and set jog increments to .01 .
4. Jog Z-axis in the negative (-) direction until the tool holder is approximately .03 from the block. At this point, stop jogging the spindle and push the TOOL RELEASE button. You will notice that the tool holder comes out of the taper.

Figure 3. Placement of aluminum block under spindle.

Figure 4. Coolant Tip (TSC machines only).
5. The clearance from the tool holder to the block should be zero (0). To accomplish this, set the jog increments to .001 and jog in the negative (-) Z direction a few increments of the hand wheel at a time. Between these moves, push the tool release button and feel for movement by placing your finger between the tool holder and the spindle. Do this until no movement is felt. You are now at zero (0).

CAUTION! Do not jog too far in the negative (-) direction or it will cause an overcurrent in the Z-axis.
6. Press MDI and turn hand wheel to zero (0). Press HANDLE JOG button. Jog the Z-axis in the positive (+) direction 0.100".
7. Press and hold the TOOL RELEASE button, grasp the block and try to move it. The block should be tight at . 100 and loose at . 110 .
> If block moves at. 100 , jog the Z-axis in the negative (-) direction one increment at a time. Press the TOOL RELEASE button and check for movement between increments until block is tight.
> If the block is tight at 0.070 or less, the Coolant Tip (Figure 4) must be replaced. Call your dealer for replacement of the Coolant Tip and the seal housing.

MICRO PROCESSOR PCB - P/N 32-3090 CABLE CONNECTIONS

| PROC.
 PLUG \# | CABLE \# | SIGNAL NAME | \Rightarrow TO \Rightarrow | LOCATION |
| :--- | :--- | :--- | :--- | :--- |\quad PLUG \#

BRUSHLESS SERVO AMPLIFIER - P/N 32-5550 CABLE CONNECTIONS

MOCON PLUG \#	CABLE \#	SIGNAL NAME	\Rightarrow T0 \Rightarrow	LOCATION	PLUG \#
P	570	LOW VOLTAGE		L. V. POWER SUPPLY	
TB A, B, C		MOTOR DRIVE		X SERVO MOTOR	
P	610	X DRIVE SIGNAL		MOCON PCB	P2
TB - HV +HV		320VDC		SPINDLE DRIVE	
Y AXIS AMP					
P	580	LOW VOLTAGE		L. V. POWER SUPPLY	
TB A, B, C		MOTOR DRIVE		X SERVO MOTOR	
P	620	X DRIVE SIGNAL		MOCON PCB	P3
TB - HV +HV		320VDC		SPINDLE DRIVE	
Z AXIS AMP					
P	590	LOW VOLTAGE		L. V. POWER SUPPLY	
TB A, B, C		MOTOR DRIVE		X SERVO MOTOR	
P	630	X DRIVE SIGNAL		MOCON PCB	P4
TB -HV +HV		320VDC		SPINDLE DRIVE	
A AXIS AMP					
P	600	LOW VOLTAGE		L. V. POWER SUPPLY	
TB A, B, C		MOTOR DRIVE		X SERVO MOTOR	
P	640	X DRIVE SIGNAL		MOCON PCB	P5
TB - HV +HV		320VDC		SPINDLE DRIVE	

POWER PCB 32-5010 CABLE CONNECTIONS

PLUG \#	CABLE \#	SIGNAL NAME $\quad \Rightarrow$ TO \Rightarrow	LOCATION	PLUG \#
P1	-	190-260VAC INPUT	CB1	-
P3		K1 COIL	K1 CONTACTOR	
P4	170	AUTO OFF	I/O PCB	P8
P5	PRI-SEC	PRI-SEC/T5	T5	
P6	930	230VAC/COOLANT PUMP	I/O PCB	P6
P7	910	115VAC CB/SOLENOID	I/O PCB	P28
P8	90	115VAC/T1	I/O PCB	P36
P9	860	LOW VOLTAGE	POWER	-
P10	860	LOW VOLTAGE	POWER	
P11	860	LOW VOLTAGE	POWER	
P12	860	LOW VOLTAGE	POWER	
P13	860	LOW VOLTAGE	POWER	-
P14	800A	OP LAMP TO SWITCH	OP LAMP SWITCH	-
P15	70	230VAC/K1 CONTACTORS	K1 CONTACTOR	-
P17	860A	I/O +12VDC	POWER	-
P19	290	230VAC/T4	T4	
P21	PORT 1\&2	-12VDC PORT 1 \& 2	PROCESSOR PCB	P3
P22	-	-12VDC	-	
P24	SPARE	SPARE	SPARE	N/A
P26	860	LOW VOLTAGE	POWER	
P27	860	LOW VOLTAGE	POWER	-
P30	800	12VAC/OP LAMP	OPERATORS LAMP	-
P31	860A	+12VDC	POWER	
TB1	-	115VAC IN	T1-SECONDARY	-
TB2	-	115VAC OUT		
POWER		740 POWER ON/OFF	ON/OFF SWITCH	

I/O PCB - P/N 32-3080 CABLE CONNECTIONS

I/O PLUG \#	CABLE \#	$\Rightarrow \mathrm{TO} \Rightarrow$	LOCATION	PLUG \#
P1	510		MOCON PCB	P11
P2	520		MOCON PCB	P12
P3	540		MOCON PCB	P14
P4	550		MOCON PCB	P10
P5	110		SERVO POWER ON	
P6	930		POWER PCB	P6
P7	940		COOL PUMP	
P8	170		POWER PCB	P4
P9	710		SPINDLE DRIVE	
P10	300		SP.FAN/GEAR BOX	
P11			SPIN LOCK I/F	-
P12	880A		SPINDLE HEAD	-
P13	820		TOOL CHANGER	
P14	900		TSC PUMP	-
P15	890		SPINDLE HEAD	-
P16	770		E-STOP SWITCH	
P17	960		AIR/OIL	
P18	970		NOT USED	N/A
P19	950		AIR/OIL	
P20	830		REGEN RESISTORS	-
P21	780		SPINDLE DRIVE	-
P22	100		(EXTERNAL)	-
P23	190		SHOT PIN	
P24	790		SPARE 2	N/A
P25	200		SPARE 3	N/A
P26	M21-24		(EXTERNAL)	
P27	1040		DOOR LOCK	
P28	910		POWER PCB	P7
P29	390		(EXTERNAL)	-
P30	810A		SHUTTLE MOTOR	-
P31	160		CHIP CONVEYOR	-
P33	90		T1	-
P34	90A		CRT	-
P35	90B		FANS	
P36	90C		POWER PCB	P8
P37	870		115 VAC SPARE	
P38	1050		DOOR SWITCH	-
P39	810		TURRET MOTOR	-
P40	770A		HYD PRESSURE TANK	-
P42	300		LUBE OIL PUMP	
P43	1060		NOT USED	N/A
P44	319		5TH BRAKE	
P45			HTC	-
P46	140		CHIP CONVEYOR	-
P47	1070		(EXTERNAL)	-
P48	-		SPARE 1	-
P49	-		SPARE 2	-
P50	200		COOLANT TANK	
P51	530		MOCON PCB	P13
P52	-		SPARE 1	
P53	180		SPIGOT SENSE	-
P54	350		SERVO BRAKE	-
P55	280		RED/GREEN LTS	-
P56	940A		TSC PUMP	-
P57	SPARE		115 VAC SPARE	-
P58	SPARE		115 VAC SPARE	-
P60	930A		TSC 230 IN	
P61	770B		E-STOP C	-

REMOTE JOG HANDLE P/N 32-0150

SERIAL KEYBOARD INTERFACE PCB WITH HANDLE JOG
 P/N 32-4030
 CABLE CONNECTIONS

PLUG\#	CABLE\#	$\Rightarrow \mathrm{TO} \Rightarrow$	LOCATION	PLUG\#
P1	700B		PROCESSOR	850
P2	-		KEYPAD	-
P3	700A		CYCLE START/ HOLD SWITCHES	-
P4	730		SP LOAD METER	-
P5	-		SPEAKER	-
P6	-		AUX FPANEL	-
J1	-		JOG HANDLE	-
J2	-		REMOTE JOG HANDLE	-
J3	750		MOCON	P18
J5	-		(MIKRON ONLY)	-
J7	-		EXTERNAL KEYBOARD	-
J12	860C		FT. PANEL FAN	-

* See "Keyboard Diagnostic" section of this manual for Troubleshooting information.

VIDEO \& KEYBOARD PCB W/ FLOPPY DRIVE - P/N 32-3201 CABLE CONNECTIONS

VIDEO PLUG \#	CABLE \#	SIGNAL NAME $\quad \Rightarrow$ TO \Rightarrow	LOCATION	PLUG \#
P1	860	LOW VOLTAGE	POWER SUPPLY PCB	
P3*	700	KEYBOARD INFO.	KEYBOARD INT.	
P4	迷	ADDRESS BUSS	MICRO PROC. PCB	-
P5	-	DATA BUSS	MOTIF PCB	
P10	-	FLOPPY DR. POWER	FLOPPY DRIVE	
P11	-	SPARE	N/A	N/A
P12	-	FLOPPY DR. SIGNAL	FLOPPY DRIVE	
P13	760	VIDEO SIGNAL	CRT	
J9	-	RS422 B	N/A	N/A
J13	850	SERIAL DATA	N/A	J1

* Not used with Serial Keyboard Interface

VIDEO \& KEYBOARD PCB - P/N 32-3200 CABLE CONNECTIONS

VIDEO PLUG \#	CABLE \#	SIGNAL NAME	$\Rightarrow \mathrm{TO} \Rightarrow$	LOCATION	PLUG \#
ADDRESS \&	-	ADDRESS BUSS		MICRO PROC. PCB	
DATA		DATA BUSS		MOTIF PCB	
P1	860	LOW VOLTAGE		POWER SUPPLY PCB	
P3	760	VIDEO SIGNAL		CRT	
P4	700	KEYBOARD INFO.		KEYBOARD INT.	

MOCON PCB - P/N 32-4023 CABLE CONNECTIONS

MOCON PLUG \#	CABLE \#	SIGNAL NAME $\quad \Rightarrow$ TO \Rightarrow	LOCATION	PLUG \#
P1	-	DATA BUSS	VIDEO PCB	
			MICRO PROC. PCB	
P2	610	X DRIVE SIGNAL	X SERVO DRIVE AMP.	P
P3	620	Y DRIVE SIGNAL	Y SERVO DRIVE AMP.	P
P4	630	Z DRIVE SIGNAL	Z SERVO DRIVE AMP.	P
P5	640	A DRIVE SIGNAL	A SERVO DRIVE AMP.	P
P32	640B	B DRIVE SIGNAL	B SERVO DRIVE AMP.	P
P6	660	X ENCODER OUTPUT	X ENCODER	
P7	670	Y ENCODER OUTPUT	Y ENCODER	
P8	680	Z ENCODER OUTPUT	Z ENCODER	
P9	690	A ENCODER OUTPUT	A ENCODER	
P30	690B	B ENCODER OUTPUT	B ENCODER	
P10	550	MOTIF INPUTS/		
		I/O OUTPUTS	I/O PCB	P4
P11	510	I/O RELAYS 1-8	I/O PCB	P1
P12	520	I/O RELAYS 9-16	I/O PCB	P2
P13	530	I/O RELAYS 17-24	1/O PCB	P51
P14	540	I/O RELAYS 25-32	I/O PCB	P3
P15	860	LOW Voltage	POWER SUPPLY PCB	
P16	720	SP. SPEED COMMAND	SPINDLE DRIVE	
P18	750	JOG INFO	JOG HANDLE	
P19		ADDRESS BUSS	VIDEO PCB	-
			MICRO PROC. PCB	-
P20	1000	SP. ENCODER OUTPUT	SPINDLE ENCODER	
P21	980	VOLTAGE MONITOR	N/A	N/A
P22	730 B	SP. DRIVE LOAD	SPINDLE DRIVE	
P24	990	HOME SENSORS	X, Y \& Z LIMIT	

MOTIF PCB - P/N 32-4020 CABLE CONNECTIONS

MOTIF				
ADDRESS	-	ADDRESS BUSS	VIDEO PCB	
\& DATA		DATA BUSS	MICRO PROC. PCB	
P2	610	X DRIVE SIGNAL	X SERVO DRIVE	P3
P3	620	Y DRIVE SIGNAL	Y SERVO DRIVE	P3
P4	630	Z DRIVE SIGNAL	Z SERVO DRIVE	P3
P5	640	A DRIVE SIGNAL	A SERVO DRIVE	P3
P6	660	X ENCODER OUTPUT	X ENCODER	
P7	670	Y ENCODER OUTPUT	Y ENCODER	
P8	680	Z ENCODER OUTPUT	Z ENCODER	
P9	690	A ENCODER OUTPUT	A ENCODER	
P10	550	MOTIF INPUTS / I/O OUTPUTS	I/O PCB	P4
P11	510	I/O RELAYS 1-8	I/O PCB	P1
P12	520	I/O RELAYS 9-16	I/O PCB	P2
P13	530	I/O RELAYS 17-24	I/O PCB	P51
P14	540	I/O RELAYS 25-32	I/O PCB	P3
P15	860	LOW Voltage	POWER SUPPLY PCB	
P16	720	SP. SPEED COMMAND	SPINDLE DRIVE	
P17	980	VOLTAGE MONITOR	SDIST PCB	P9
P18	750	JOG INFO.	JOG HANDLE	
P20	1000	SP. ENCODER OUTPUT	SPINDLE ENCODER	
P21	1020	SP. TEMP	SPINDLE	
P22	730 B	SP. DRIVE LOAD	SPINDLE DRIVE	
P24	990	HOME SENSORS	X, Y \& Z LIMIT SW.	

SERVO DISTRIBUTION (SDIST) PCB - P/N 32-5020 CABLE CONNECTIONS

I/O				
PLUG \#	CABLE \#	SIGNAL NAME \Rightarrow TO \Rightarrow	LOCATION	PLUG \#
P1	570	X DRIVER LOW VOLTAGE	X SERVO DRIVER	P1
P2	580	Y DRIVER LOW VOLTAGE	Y SERVO DRIVER	P1
P3	590	Z DRIVER LOW VOLTAGE	Z SERVO DRIVER	P1
P4	600	A DRIVER LOW VOLTAGE	A SERVO DRIVER	P1
P5	$860 A$	12VDC	POWER SUPPLY PCB	-
P7	FAN	FAN VOLTAGE	FAN (SERVO)	-
P8	80	160VDC	I/O PCB	P32
P9	980	VOLTAGE MONITOR	MOTIF PCB	P17
P10	920	REGEN RESISTORS	REGEN RESISTORS	-
P11	110	SERVO POWER	I/O PCB	P5
P12	970	OV V	I/O PCB	P18
P13	1060	GND FAULT	I/O PCB	P43
TB1	N/A	115VAC FROM T1	T1	P8
TB2	N/A	160VDC TO AMPS.	SERVO DRIVERS	P8

SERVO DRIVER PCBs - P/N 32-4070 CABLE CONNECTIONS

1/0					
PLUG \#	CABLE \#	SIGNAL NAME	\Rightarrow TO \Rightarrow	LOCATION	PLUG \#
X AXIS					
P1	570	LOW VOLTAGE		SDIST PCB	P1
P2		MOTOR DRIVE		X SERVO MOTOR	
P3	610	X DRIVE SIGNAL		MOTIF PCB	P2
P8	-	+160VDC		SDIST PCB	TB2
Y AXIS					
P1	580	LOW VOLTAGE		SDIST PCB	P2
P2		MOTOR DRIVE		Y SERVO MOTOR	
P3	620	X DRIVE SIGNAL		MOTIF PCB	P3
P8	-	+160VDC		SDIST PCB	TB2
Z AXIS					
P1	590	LOW VOLTAGE		SDIST PCB	P3
P2		MOTOR DRIVE		Z SERVO MOTOR	
P3	630	X DRIVE SIGNAL		MOTIF PCB	P4
P8	-	+160VDC		SDIST PCB	TB2
A AXIS					
P1	600	LOW VOLTAGE		SDIST PCB	P4
P2		MOTOR DRIVE		A SERVO MOTOR	
P3	640	X DRIVE SIGNAL		MOTIF PCB	P5
P8	-	+160VDC		SDIST PCB	TB2

RS-232 PORT \#1 PCB - P/N 32-4090 CABLE CONNECTIONS

| PLUG \# | CABLE \# | \Rightarrow TO \Rightarrow | LOCATION |
| :--- | :---: | :--- | :---: | PLUG \#

SPINDLE LOCK PCB - P/N 32-3095 CABLE CONNECTIONS

PLUG \# CABLE \#	\Rightarrow TO \Rightarrow	LOCATION	PLUG \#
P1	890		I/O PCB
P2	520		I/O PCB

CABLE LIST

The following is a summary of the cables used in the wiring of this control:

CNC WIRING OVERALL 28-Mar-96

WIRE/ TERMINAL NUMBER	FUNCTION NAME:
GND	INCOMING EARTH GROUND \#8 -FROM INCOMING POWER GROUND -TO CHASSIS GROUND -TO 160 VDC RETURN -TO SHIELD OF ALL BULK CABLES -TO LOGIC RETURN (D GROUND 65)
L1	INCOMING 230VAC, PHASE 1, TO CB1-1 \#10
L2	INCOMING 230VAC, PHASE 2, TO CB1-2 \#10
L3	INCOMING 230VAC, PHASE 3, TO CB1-3 \#10
L4	230VAC, PHASE 1, CB1 T0 K1-1 \#10
L5	230VAC, PHASE 2, CB1 TO K1-2 \#10
L6	230VAC, PHASE 3, CB1 T0 K1-3 \#10
R/L7	230VAC FROM K1 TO SPINDLE DRIVE, PHASE 1 \#10
S/L8	230VAC FROM K1 TO SPINDLE DRIVE, PHASE 2 \#10
T/L9	230VAC FROM K1 TO SPINDLE DRIVE, PHASE 3 \#10
71/L4	FUSED 230 VAC (FROM MAIN CB1-4 TO K1-1) \#10
72/L5	FUSED 230 VAC (FROM MAIN CB1-5 TO K1-2) \#10
73/L6	FUSED 230 VAC (FROM MAIN CB1-6 TO K1-3) \#10
74/R	230 VAC (FROM MAIN CONTACTOR K1-4) \#12
75/S	230 VAC (FROM MAIN CONTACTOR K1-5) \#12
76/T	230 VAC (FROM MAIN CONTACTOR K1-6) \#12
77	230VAC FUSED 12A TO 3 PH XFORMER T1 \#12
78	230VAC FUSED 12A TO 3 PH XFORMER T1 \#12
79	230VAC FUSED 12A T0 3 PH XFORMER T1 \#12
80	DISTRIBUTED 160 VDC - SHIELD +2
81	+160 VDC HIGH VOLTAGE SUPPLY \#16
82	160 VDC RETURN \#16
90115	VAC FROM TRANSFORMER T1
91/U	STEPPED-DOWN 115 VAC (FROM XFRMER T1) \#12
92/V	STEPPED-DOWN 115 VAC (FROM XFRMER T1) \#12
93/W	STEPPED-DOWN 115 VAC (FROM XFRMER T1) \#12
90A 115	VAC TO CRT - SHIELD +2
92	LEG 1 \#16
93	LEG 2 \#16
90B 115	VAC TO HEAT EXCHANGER - SHIELD +2

LEG 1 \#16
LEG 2 \#16
115 VAC TO CB4 - SHIELD +2
LEG 1 \#16
LEG 2 \#16

M-FIN (IOASM TO SIDE OF BOX)
LEG 1 \#16
LEG 2 \#16

SERVO POWER CONTROL - SHIELD +2
GROUND RETURN
RELAY DRIVER SINKS 12VDC TO GROUND
CHIP CONVEYOR COMMAND CABLE SHIELD +4 \#20
(REMOVED IN REV J IOPCB)
OVERCURRENT SENSE FROM CHIP CONVEYOR
(REMOVED IN REV J IOPCB)
230VAC 3PH POWER TO CHIP CONVEYOR MOTOR (5 +SHIELD)
PHASE A 230VAC
PHASE B 230VAC
PHASE C 230VAC
STARTING WINDING 230VAC
STARTING WINDING 230VAC
230VAC 3PH POWER IN CONDUIT TO CHIP CONVEYOR
12VDC TO CHIP CONVEYOR CONTROL PCB
(REMOVED IN REV J IOPCB)
3PH 230VAC TO CHIP CONVEYOR CONTROLLER
PHASE A 230VAC
PHASE B 230VAC
PHASE C 230VAC

AUTO OFF FUNCTION - SHIELD +2
RELAY 1-7 COMMON (C7) ; AUTO OFF
RELAY 1-7 N.O.
COOLANT SPIGOT DETENT SWITCH
SIGNAL
COMMON
UNCLAMP FROM SPINDLE HEAD TO IOASM
INPUT 25
DIGITAL RETURN

COOLANT SPIGOT MOTOR (12VDC)
MOTOR +
MOTOR -

DATA CABLE TO 3" FLOPPY DISK DRIVE (40 PINS)

June 1997	
220	SERVO BRAKE 115VAC - SHIELD +2
221	115VAC COMMON
222	115VAC SWITCHED
230	5'th AXIS BRAKE - SHIELD +2
231	115VAC COMMON
232	115VAC SWITCHED
240	SPARE INPUTS FROM IOPCB P25
241	COMMON
242	SPARE 3
243	SPARE 4
250	HORIZONTAL TOOL CHANGER SHUTTLE VALVE - SHIELD +2
251	COMMON 115VAC
252	SWITCHED 115VAC
260	K210 CABLING FOR EC
270	K111 CABLING FOR EC
280	RED/GREEN STATUS LIGHT WIRING
281	RED LAMP 115VAC
282	GREEN LAMP 115VAC
283	COMMON 115VAC
290	230VAC T0 TRANSFORMER T2 (deleted 1-Aug-90)
300	115VAC TO SPINDLE MOTOR FAN/OIL PUMP/OILER
301	LEG 1 115VAC FUSED AT 3 A \#18
302	LEG 2 115VAC FUSED AT 3 A \#18
310	SOLENOIDS OUTPUT TO HORIZONTAL PALLET CHANGER
311	115VAC COMMON
312	UNSCREW
313	SCREW
314	DB DOWN
315	PALLET UP
316	PALLET CW
317	PALLET CCW
320	SWITCH INPUTS FROM HORIZONTAL PALLET CHANGER
321	SWITCHES COMMON
322	DB DOWN
323	PALLET UP
324	PALLET DOWN
325	PALLET CW
326	PALLET CCW
327	SCREW IN *
328	FIXTURE CLAMPED *
330	230 V 3 PH FROM CB6 T0 K2 (LATHE HYDRAULICS)
331	
332	
333	

```
SERVO BRAKE 115VAC - SHIELD +2
    115VAC COMMON
    115VAC SWITCHED
```

5'th AXIS BRAKE - SHIELD +2
115VAC COMMON
115VAC SWITCHED
SPARE INPUTS FROM IOPCB P25
COMMON
SPARE 3
SPARE 4
HORIZONTAL TOOL CHANGER SHUTTLE VALVE - SHIELD +2
COMMON 115VAC
SWITCHED 115VAC
K210 CABLING FOR EC
K111 CABLING FOR EC
RED LAMP 115VAC
GREEN LAMP 115VAC
COMMON 115VAC
230VAC TO TRANSFORMER T2 (deleted 1-Aug-90)
LEG 1 115VAC FUSED AT 3 A \#18
LEG 2 115VAC FUSED AT 3 A \#18
115VAC COMMON
UNSCREW
SCREW
DB DOWN
PALLET UP
PALLET CW
PALLET CCW
SWITCHES COMMON
DB DOWN
PALLET UP
PALLET DOWN
PALLET CW
PALLET CCW
SCREW IN *
FIXTURE CLAMPED *
230V 3PH FROM CB6 TO K2 (LATHE HYDRAULICS)

360-389

410-483 RESERVED LEG 1 COMMON LEG 2 SWITCHED

RESERVED

LEG 1 \#18

230V 3PH FROM K2 TO HYDRAULIC PUMP (LATHE)

SERVO BRAKE RELEASE 115VAC - SHIELD +2

115VAC TO 4'TH AXIS BRAKE (LATHE PART DOOR) - SHIELD +2
LEG 2 SWITCHED \#18
SPINDLE DRIVE COAST COMMAND - SHIELD +2
LOGIC COMMON \#20
SPINDLE COAST COMMAND \#20

ALL WIRES CARRYING SERVO MOTOR DRIVE POWER (all \#14)
A PHASE
B PHASE
C PHASE
GROUND
A AXIS MOTOR POWER
B AXIS MOTOR POWER
X AXIS MOTOR POWER
Y AXIS MOTOR POWER
Z AXIS MOTOR POWER
OVERTEMP SENSOR FROM SPINDLE MOTOR - SHIELD +2
OVERTEMP WIRE 1 \#20 (N.C.)
OVERTEMP WIRE 2 \#20
RELAY CARD 1 DRIVE CABLE - 16 WIRE RIBBON \#24
RELAY CARD 2 DRIVE CABLE - 16 WIRE RIBBON \#24
RELAY CARD 3 DRIVE CABLE - 16 WIRE RIBBON \#24
RELAY CARD 4 DRIVE CABLE - 16 WIRE RIBBON \#24
INPUTS CARD CABLE (MOTIF-P10) 34 WIRE RIBBON \#24
TO MICROPROCESSOR P8 (REMOVED NOV-94)
-12V FROM 862 AT SUPPLY TO P8-1 \#24
Gnd FROM 865 AT SUPPLY TO P8-4 \#24
X AXIS DRIVER LOW VOLTAGE POWER - 6 WIRE RIBBON
14 VAC LEG 1 (DRIVER P2-1 \#24
14 VAC LEG 2 (DRIVER P2-2 \#24
16 VAC LEG 1 (DRIVER P2-3 \#24
16 VAC LEG 2 (DRIVER P2-4 \#24

CHASSIS GROUND (DRIVER P2-5 \#24
CHASSIS GROUND (DRIVER P2-6 \#24
(SAME AS 571 to 576)
(SAME AS 571 to 576)
(SAME AS 571 to 576)
610 X AXIS DRIVER CONTROL CABLE
$611 . .616$ TBD FOR BRUSH \& BRUSHLESS
Y AXIS DRIVER CONTROL CABLE
(SAME AS 611-616)
Z AXIS DRIVER CONTROL CABLE
(SAME AS 611-616)
A AXIS DRIVER CONTROL CABLE
(SAME AS 611-616)
B AXIS DRIVER CONTROL CABLE

LEG 1 OF 230VAC \#14
LEG 2 \#14
LEG 3 \#14
X-ENCODER CABLE
LOGIC RETURN (D GROUND) \#24
ENCODER B CHANNEL \#24
+5 VDC \#24
ENCODER Z CHANNEL \#24 (OR C)
HOME/LIMIT SW \#24
OVERHEAT SWITCH \#24
ENCODER A*
ENCODER B*
ENCODER Z* (OR C*)
Y-ENCODER CABLE
(SAME AS 661-66T)
Z-ENCODER CABLE
(SAME AS 661-66T)
A-ENCODER CABLE
(SAME AS 661-66T)
B AXIS ENCODER CABLE
KEYBOARD CABLE - 34 WIRE RIBBON WITH IDC
(FROM VIDEO P4 TO KBIF P1)

FORWARD/REVERSE/RESET TO SPINDLE - SHIELD +4 FORWARD COMMAND (SP DR CN1-18 TO IO P9-4) \#24 REVERSE COMMAND (CN1-19 TO IO P9-3) \#24 RESET COMMAND (CN1-21 TO IO P9-2) \#24 COMMON (CN1-14 TO IO P9-1) \#24

ANALOG SPEED COMMAND TO SPINDLE - SHIELD +2 0 T0 +10 VOLTS SPEED COMMAND (SPINDLE DRIVE CN1-1) \#24 SPEED COMMAND REFERENCE (A GROUND) (CN1-17) \#24

POWER METER FROM SPINDLE DRIVE TO KBIF - SHIELD +2 METER + (SPINDLE DRIVE CN1-5 TO KBIF) \#24 METER - (CN1-6 TO KBIF) \#24

POWER METER FROM KBIF TO METER - SHIELD +2 METER + AFTER TRIM POT (KBIF TO METER) \#24 METER - AFTER TRIM POT (KBIF TO METER) \#24

ANALOG SIGNAL FROM SPINDLE DRIVE LOAD MONITOR SIGNAL 0..5V GROUND

POWER ON/OFF CABLE TO FRONT PANEL - SHIELD +4 POWER ON SWITCH LEG 1 (24 VAC) \#24 POWER ON SWITCH LEG 2 \#24 N.O. POWER OFF SWITCH LEG 1 (24 VAC) \#24 POWER OFF SWITCH LEG 2 \#24 N.C.

JOG-CRANK DATA CABLE - SHIELD +4
LOGIC RETURN (D GROUND) (65) \#24
ENCODER A CHANNEL \#24
ENCODER B CHANNEL \#24
+5 VDC \#24
MONITOR VIDEO DATA CABLE - SHIELD +9 (all \#24) (FROM VIDEO P3 TO CRT)

EMERGENCY STOP INPUT CABLE - SHIELD +2 SIGNAL (INPUT 8) \#20 RETURN (D GROUND) (65) \#20

SECOND E-STOP INPUT FOR HORIZONTAL
STATUS CABLE FROM SPINDLE DRIVE - SHIELD +4 +12 VDC (SPINDLE DRIVE CN1-25) \#24
FAULT (INPUT 18 TO CN1-24) \#24
AT SPEED (INPUT 20 TO CN1-23) \#24
STOPPED (INPUT 19 TO CN1-22) \#24
SPARE INPUTS FROM IOPCB P24
SPARE 1
SPARE 2
COMMON
12VAC TO LAMP - SHIELD +2
UNSWITCHED LEG 1 \#20

SWITCHED LEG 2 \#20

800A
800B
810
811

CABLE FOR LAMP SWITCH - SHIELD +2
CABLE WITH 10VAC FROM TRANSFORMER T2-SHIELD +2
TOOL CHANGER MOTORS - SHIELD +2 \#20
TURRET MOTOR + (IO P30-2 TO P6-J) \#14
TURRET MOTOR - (IO P30-1 TO P6-I) \#14
TOOL CHANGER MOTORS - SHIELD +2 \#20
SHUTTLE MOTOR - (IO P30-4 TO P6-A) \#14
SHUTTLE MOTOR + (IO P30-3 TO P6-B) \#14
TOOL CHANGER STATUS - SHIELD +7
LOGIC RETURN (D GROUND) (P6-F/H/L/M) \#24
GENEVA MARK (INPUT 5 TO P6-G) \#24 (LATHE PART DOOR)
TOOL \#1 (INPUT 3 TO P6-E) \#24
SHUTTLE IN (INPUT 1 TO P6-C) \#24 (LATHE TURRET CLAMPED)
SHUTTLE OUT (INPUT 2 TO P6-D) \#24 (LATHE TURRET UNCLAMPED)
OVERHEAT THERMOSTAT - SHIELD +2
OVERHEAT SIGNAL (INPUT 14) \#20
OVERHEAT RETURN (D GROUND) (65) \#20
CIRCUIT BREAKER FOR 160 VDC - SHIELD +2
LEG 1 (TO 81) \#14
LEG 2 \#14
SERIAL PORT \#1 INTERFACE CABLE (16 WIRE RIBBON \#24)
SERIAL PORT \#2 INTERFACE CABLE (16 WIRE RIBBON \#24)
$+12 \mathrm{~V} /+5 \mathrm{~V} / \mathrm{Gnd}$ POWER CABLES - 4 WIRE (all \#18)
+12 VOLTS
-12 VOLTS FROM LOW V SUPPLY TO 68020 PCB
+5 VOLTS
-5 VOLTS
LOGIC POWER RETURN (D GROUND)
POWER GOOD SIGNAL FROM SUPPLY
12 VOLT POWER TO IOPCB - SHIELD +2
+12 VOLTS
LOGIC POWER RETURN (D GROUND)
+5 POWER TO 3" FLOPPY DRIVE
$+5,+12,-12$ POWER TO 68030
115VAC TO OILER - SHIELD +2
115VAC LEG 1 \#18
115VAC LEG 2 \#18
HIGH/LOW GEAR UNCLAMP/LOCK SOLENOID POWER - SHIELD +6
115 VAC SOLENOID COMMON (IO P12-5) \#18
HIGH GEAR SOLENOID (IO P12-4) \#18

June 1997	
964	DOOR OPEN RETURN (D GROUND) (65) \#24 (OBSOLETE OPTION)
970	LOW VOLTAGE SENSOR - SHIELD +2
971	LOW VOL SIGNAL (INPUT 11 FROM PMON P9-3) \#24
972	LOW VOL RETURN (D GROUND) (PMON P9-4) \#24
980	VOLTAGE MONITOR - SHIELD +2
981	VOLTAGE MONITOR 0 T0 +5 (PMON P9-1 / MOTIF P17-1) \#24
982	VOLTAGE MON RET (A GND) (PMON P9-2 / MOTIF P17-2) \#24
990	HOME SENSORS - SHIELD +4
991	X HOME SWITCH (MOTIF P24-2 TO P5-B) \#24
992	Y HOME SWITCH (MOTIF P24-3 TO P5-D) \#24 (LATHE TAIL STOCK)
993	Z HOME SWITCH (MOTIF P24-4 T0 P5-L) \#24
994	HOME SWITCH RETURN (MOTIF P24-1 TO P5-C) \#24
1000	SPINDLE ENCODER CABLE - SHIELD +5 (LATHE TAIL STOCK)
1001	LOGIC RETURN (D GROUND) (TO MOTIF P20-1) \#24
1002	ENCODER A CHANNEL (TO MOTIF P20-2) \#24
1003	ENCODER B CHANNEL (TO MOTIF P20-3) \#24
1004	+5 VDC (T0 MOTIF P20-4) \#24
1005	ENCODER Z CHANNEL (TO MOTIF P20-5) \#24
1010	KEYBOARD INPUTS FROM HORIZONTAL OPERATOR PANEL
1011	CYCLE START
1012	CYCLE START
1013	FEED HOLD
1014	FEED HOLD
1015	PART READY
1016	FIXTURE ROTATE
1017	PART RDY/FIX ROT COMMON
1020	SPINDLE TEMPERATURE SENSOR CABLE - SHIELD +3
1021	SIGNAL
1022	ANALOG RETURN
1023	+5 VOLTS TO SENSOR
1024	SHIELD GROUND
1030	SPINDLE LOAD RESISTOR - SHIELD +2
1031	REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B1) \#18
1032	REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B2) \#18
1040	Y160 (MIKRON DOOR LOCK OR HORIZONTAL PART READY LAMP)
1041	SWITCHED RELAY CONTACT
1042	SWITCHED RELAY CONTACT
1050	DOOR SWITCH WIRING THRU SUPPORT ARM - SHIELD +2
1051	DOOR OPEN SIGNAL (INPUT 9) \#24
1052	DOOR OPEN RETURN (D GROUND) (65) \#24
1060	GROUND FAULT DETECTION SENSE INPUT
1061	+ INPUT FROM SENSE RESISTOR
1062	- INPUT FROM SENSE RESISTOR
1070	SKIP INPUT FROM SENSOR - SHIELD +2
1071	LOGIC COMMON
1072	SKIP SIGNAL

DOOR OPEN RETURN (D GROUND) (65) \#24 (OBSOLETE OPTION)
LOW VOLTAGE SENSOR - SHIELD +2
LOW VOL SIGNAL (INPUT 11 FROM PMON P9-3) \#24
LOW VOL RETURN (D GROUND) (PMON P9-4) \#24
VOLTAGE MONITOR - SHIELD +2
VOLTAGE MONITOR 0 TO +5 (PMON P9-1 / MOTIF P17-1) \#24
VOLTAGE MON RET (A GND) (PMON P9-2 / MOTIF P17-2) \#24
HOME SENSORS - SHIELD +4
X HOME SWITCH (MOTIF P24-2 TO P5-B) \#24
Y HOME SWITCH (MOTIF P24-3 TO P5-D) \#24 (LATHE TAIL STOCK)
Z HOME SWITCH (MOTIF P24-4 TO P5-L) \#24
HOME SWITCH RETURN (MOTIF P24-1 TO P5-C) \#24

LOGIC RETURN (D GROUND) (TO MOTIF P20-1) \#24
ENCODER A CHANNEL (TO MOTIF P20-2) \#24
ENCODER B CHANNEL (TO MOTIF P20-3) \#24
+5 VDC (TO MOTIF P20-4) \#24
ENCODER Z CHANNEL (TO MOTIF P20-5) \#24
KEYBOARD INPUTS FROM HORIZONTAL OPERATOR PANEL
CYCLE START
CYCLE START
FEED HOLD
FEED HOLD
PART READY
fixture Rotate
PART RDY/FIX ROT COMMON
SPINDLE TEMPERATURE SENSOR CABLE - SHIELD +3
SIGNAL
ANALOG RETURN +5 VOLTS TO SENSOR SHIELD GROUND

REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B1) \#18 REGEN LOAD RESISTOR FOR SPINDLE DRIVE (B2) \#18

SWITCHED RELAY CONTACT SWITCHED RELAY CONTACT

OOR SWITCH WIRING THRU SUPPORT ARM - SHIELD +2 DOOR OPEN SIGNAL (INPUT 9) \#24
DOOR OPEN RETURN (D GROUND) (65) \#24
GROUND FAULT DETECTION SENSE INPUT

+ INPUT FROM SENSE RESISTOR
- INPUT FROM SENSE RESISTOR

SKIP INPUT FROM SENSOR - SHIELD +2
SKIP SIGNAL

ELECTRICAL WIRING DIAGRAMS

6 atwo	CIRCUIT BREAKER $($ SINGLE)	$\triangle \nabla$	VARISTOR
		(47)	NEON BULB (W/ RESISTOR)
		${ }_{0}{ }_{0}$	PUSH BUTTON SWITCH (NORMALLY CLOSED)
		$\frac{1}{0}$	PUSH BUTTON SWITCH (NORMALLY OPEN)
DIODE		$\cdots \mathrm{C}$	RELAY (CLOSED)
		\bigcirc -	RELAY (OPEN)
$\frac{\perp}{\overline{\bar{\prime}}}$	GROUND		
		0	RELAY (SINGLE POLE DOUBLE THROW)
(®)	LAMP	\checkmark MM	RESISTOR
θ	LED (LIGHT EMITTING DIODE)	$4<$	SOLENOID
O-20	LIMIT SWITCH (CLOSED)		TRANSFORMER
$\overbrace{0}$ LIMIT SWITCH (OPEN)		$\underline{-}$	CAPACITOR
$=M$	MOTOR	7	OPTO-I5OLATOR
	FUSE		
ELECTRICAL SYMBOLS			
$12 / 96$	HAAS AUTOMATION		VF SERIES PAGE

INPUT VOLTAGE
$195-260 \mathrm{VAC}$

CNC UNIT 12/96 HAAS AUTOMATION VF SERIES PAGE 4

雨

TOLL SHUTTLE IN

TOLL Shuttle rut

TIUL TURRET CW

TIUL TURRET CCW

HIGH GEAR SHIFT

LW GEAR SHIFT

TOL UNCLAMP

SPINDLE LロCK

RELAY COIL DRIVERS, K9 THROUGH K16 12/96 HAAS AUTOMATION VF SERIES PAGE 9

RELAY COIL DRIVERS, K25 THROUGH K32 12/96 HAAS AUTOMATION VF SERIES PAGE 11

PROBE OPTION

ASSEMBLY DRAWINGS


```
1 - 30-1100 - LEAD SCREW ASSEMBLY
2 - 30-7524 - BASE OIL LINE ASSEMBLY
3-32-1600 - Y AXIS MOTOR ASSEMBLY
4 - 32-2030 - TELEMECHANIQUE SWITCH ASSEN
```


VF - 1 BASE


```
1 - 30-1100 - LEAD SCREW ASSEMBLY
2 - 30-7525 - COLUMN OIL LINE ASSEMBLY
3 - 32-2040 - TELEMECHANIQUE SWITCH ASSEMBLY
```


VF - 1 COLUMN


```
1 - 30-1100 - LEAD SCREW ASSEMBLY
2 - 30-7523 - SADDLE OIL LINE ASSEMBLY
3-32-1400 - X AXIS MOTOR ASSEMBLY
4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY
```


VF-1 SADDLE

$1-30-1210-$ LEAD SCREW ASSEMBLY
$2-32-1600-$ MOTOR ASSEMBLY
$3-32-2031$ - TELEMECHANIQUE SWITCH ASSEMBLY
$4-30-7526-$ BASE OIL LINE ASSEMBLY

VF - 3 BASE


```
1 - 30-1210 - LEAD SCREW ASSEMBLY
2 - 32-7528 - COLUMN OIL LINE ASSEMBLY
3-32-2041 - TELEMECHANIQUE SWITCH ASSEMBLY
```


VF - 3 COLUMN


```
1 - 30-1200 - LEAD SCREW ASSEMBLY
2 - 30-1401 - MOTOR ASSEMBLY
3 - 30-7527 - SADDLE OIL LINE ASSEMBLY
4 - 32-2050 - TELEMECHANIQUE SWITCH ASSEMBLY
```

VF-3 SADDLE

VF-3/4 GEARBOX ASSEMBLY

VF-3 (X-AXIS) LEAD SCREW ASSEMBLY

Z AXIS LEAD SCREW ASSEMBLY
1 - 20-7187 - BUMPER
$2-20-9095$ - BUMPER
$3-25-7042$ - COVER PLATE, LEAD SCREW

Y AXIS LEAD SCREW ASSEMBLY
1 - 20-7185 - BUMPER
2 - 20-7187 - BUMPER
3 - 25-7042 - COVER PLATE, LEAD SCREW

VF-3/4 (Y/Z-AXIS) LEAD SCREW ASSEMBLY

VF-3/4 TOOL CHANGER ASSEMBLY (32 TOOL)

ITEM	QTY	PART NO	TITLE
1	1	20-7035G	VERTICAL AXLE
2	1	20-7038A	BEARING HOUSING
3	1	20-7475	ARM, SLIP CLUTCH
4	1	20-7476	HUB, SLIP CLUTCH
5	1	20-9008	TOOL HOLDING ARM
6	1	20-9325	32 TOOL GENEVA STAR, 2 PIN
7	1	20-9326	TOOL CARRIAGE, MACHINING
8	1	20-9330	32 T/C HOLDING PLATE
9	1	22-2065	LOCATING PIN
10	1	22-7034	SPACER, CAM FOLLOWER
11	2	22-7106	'V' TRACK, T/C
12	3	22-7163	RIDER, TRAP DOOR
13	1	22-7255A	TOOL \#1 STAND OFF
14	2	22-7263	SWITCH MOUNTING BLOCK
15	1	22-7477	PRESSURE PLATE
16	1	25-7036	CAP, TOOL CHANGER
17	1	25-7162	CONNECTOR BRACKET
18	1	25-7168	DOOR OPENER BRACKET
19	1	25-9085	CONDUIT MTG PLATE
20	1	25-9329	DOOR T/C COVER
21	1	25-9331	TOOL CHANGER COVER
22	1	25-9334	SHUTTLE COVER PLATE
23	2	26-7239	SPACER RING
24	1	29-7612	CT TOOLING DECAL
25	1	30-0005	GENEVA DRIVER ASSY
26	1	30-0006	CAROUSEL ASSY, 32 TOOL
27	1	32-1800	SHUTTLE MOTOR ASSY
28	2	32-2010	24" LIMIT SWITCH
29	1	32-7011	CONDUIT ASSY, T/C
30	1	32-7611	CONDUIT ASSY, TOOL CARRIAGE
31	6	40-1500	SHCS, $5 / 16-18 \times 1{ }^{\prime \prime}$
32	1	40-16091	BHCS, $10-32 \times 1{ }^{1 /}$
33	3	40-1632	SHCS, 1/4-20 x 1/2"
34	6	40-1669	BHCS, 8 -32 $\times 3 / 8{ }^{\prime \prime}$
35	6	40-1676	SHCS, $5 / 16-18 \times 2$ "
36	10	40-1697	SHCS, 1/4-20 x 3/4"
37	4	40-1803	SHCS, 8 -32 x 1 1/4"
38	12	40-1850	SHCS, $10-32 \times 3 / 8 "$
39	4	40-1970	FHCS, $1 / 4-28 \times 1{ }^{1 /}$
40	8	40-1980	BHCS, 1/4-20 x 1/2"
41	4	40-2000	SHCS, 1/4-20 x 5/8"
42	4	43-1602	HHB, 1/2-13 x ${ }^{\prime \prime}$
43	5	43-7000	HHB, 5/16-18 x $13 / 4{ }^{\prime \prime}$
44	1	44-1710	SSS, CUP PT 1/4-20 x 3/8"
45	1	45-0050	WASHER, 5702-313-120
46	17	45-1600	WASHER, SPLIT LOCK, 5/16 MED.
47	1	45-1725	WASHER, FLAT CUT 3/4"
48	4	45-1740	WASHER, BLACH HARD 1/2"
49	10	45-1800	WASHER, SPLIT LOCK 1/4" MED.
50	2	45-2020	WASHER, NYLON
51	1	46-1705	LOCK-NUT, ELASTIC, 3/4-10

ITEM	QTY	PART No	TITLE
52	1	48-0005	PIN, DOWEL $3 / 16 \times 3 / 8{ }^{\prime \prime}$
53	1	48-0019	PIN, DOWEL $1 / 4 \times 5 / 8{ }^{\prime \prime}$
54	1	48-0020	PIN, DOWEL $1 / 4 \times 1$ "
55	2	48-1750	PIN, DOWEL $1 / 2 \times 1$ 1/2"
56	2	51-0010	BEARING DEEP GROOVE
57	1	51-0012	BEARING LOCK NUT, BH-06
58	1	51-6000	BEARING LOCK NUT, NT-05
59	1	54-0010	CAM FOLLOWER, TOOL CHANGER
60	2	54-0020	BUSHING, GUIDE WHEEL
61	4	54-0030	GUIDE WHEEL
62	2	54-0040	STANDARD BUSHING, GD. WHEEL
63	2	55-0010	SPRING WASHER, B2500-080
64	1	57-9139	GASKET, TOOL HOLD ARM
65	1	57-9335	SHUTTLE COVER GASKET
66	6	63-1031	CABLE CLAMP, 1/4"
67	1	70-0050	PLT4S-M CABLE TIES
68	1	75-15721	MOLEX BSNG. 2 PIN MALE
69	1	78-1996	SPLIT FLEX TUBING 1/2"I.D.
70	1.75'	79-1000	WIRE CHANNEL, 1" $\times 2$ "
71	1.70'	79-1001	COVER, 1 " WIRE CHANNEL

VF -6 BASE

ASSEMBLY DRA WINGS

VF -6 COLUMN


```
1 - 30-1240 - LEAD SCREW ASSEMBLY
2 - 30-7410 - SADDLE OIL LINE ASSEMBLY
3- 32-1406 - X AXIS MOTOR ASSEMBLY
4 - 32-2051 - TELEMECHANIQUE SWITCH ASSEMBLY
```


VF -6 SADDLE

ITEM	QTY	DWG. NO.	TITLE
1	1	$20-0151$	MOTOR MOUNT40/50mm BS MACH.
2	1	$20-0152$	BEARING HOUSING 40/50mm BS MACH.
3	1	$20-9213$	SPACER RING 40mm BALL SCREW
4	1	$22-2629$	KEY .1875/.1870 SQ.
5	1	$24-9961$ A	40mm BS X-AXIS
6	1	$30-1219$	COUPLING ASSEMBLY VF-7
7	1	$30-1222$	BALL SCREW SUPPORT BEARING ASSEMBLY
8	6	$40-1715$	SHCS, 5/16-18 X 1 1/2
9	4	$51-0007$	BEARING DEEP GROOVE
10	2	$51-0008$	BEARING LOCK NUT TCN-06-F

VF -6/8 (X-AXIS) LEAD SCREW ASSEMBLY

VF - 6..9 TOOL CHANGER (32 TOOL)

ITEM

1	2	20-0031
2	1	20-7035G
3	1	20-7038A
4	1	20-7475
5	1	20-7476
6	1	20-9325
7	1	20-9326
8	1	20-9330
9	1	20-9834
10	1	22-2065
11	1	22-7034
12	2	22-7106
13	4	22-7163
14	1	22-7255A
15	1	22-7477
16	1	22-9805
17	1	25-0014
18	1	25-7036
19	1	25-7162
20	1	25-7168
21	1	25-9329
22	1	25-9331
23	1	25-9334
24	1	25-9912
25	2	26-7239
26	1	29-7612
27	1	30-0005
28	1	30-0006
29	1	32-1800
30	2	32-2013
31	1	32-7012B
32	1	32-7611
33	6	40-1500
34	1	40-16091
35	8	40-1632
36	6	40-1669
37	6	40-1676
38	10	40-1697
39	8	40-1800
40	4	40-1830
41	12	40-1850
42	4	40-1970
43	8	40-1980
44	13	40-2000
45	5	43-7000
46	1	44-1710
47	9	45-0045
48	1	45-0050
49	17	45-1600

TITLE

ADJ. SWITCH BLOCK
VERTICAL AXLE
BEARING HOUSING
ARM, SLIP CLUTCH
HUB, SLIP CLUTCH
32 TOOL GENEVA STAR, 2 PIN
TOOL CARRIAGE, MACHINING
32 T/C HOLDING PLATE
TOOL CHANGER CLUTCH ARM
LOCATING PIN
SPACER, CAM FOLLOWER
'V' TRACK, T/C
RIDER, TRAP DOOR
TOOL \#1 STAND OFF
PRESSURE PLATE
HOLDING ARM
BRACE
CAP, TOOL CHANGER
CONNECTOR BRACKET
DOOR OPENER BRACKET
DOOR T/C COVER
TOOL CHANGER COVER
SHUTTLE COVER PLATE
CONDUIT MOUNTING PLATE, VF-6C
SPACER RING
CT TOOLING DECAL
GENEVA DRIVER ASSY
CAROUSEL ASSY, 32 TOOL
SHUTTLE MOTOR ASSY
TELMECH 44" CABLE ASS'Y
MOLDED ATC CABLE ASSY
CONDUIT ASSY, TOOL CARRIAGE
SHCS, 5/16-18 X 1"
BHCS, 10-32 x 1 "
SHCS, $1 / 4-20 \times 1 / 2^{\prime \prime}$
BHCS, 8-32 x 3/8"
SHCS, 5/16-18 x 2"
SHCS, $1 / 4-20 \times 3 / 4 "$
SHCS, 8-32 X 3/4" LG.
HHB, 1/2-13 x $13 / 4^{\prime \prime}$
SHCS, $10-32 \times 3 / 8^{\prime \prime}$
FHCS, $1 / 4-28 \times 1{ }^{\prime \prime}$
BHCS, $1 / 4-20 \times 1 / 2^{\prime \prime}$
SHCS, $1 / 4-20 \times 5 / 8 "$
HHB, $5 / 16-18 \times 13 / 4^{\prime \prime}$
SSS, CUP PT 1/4-20 x 3/8"
WASHER, BLK HRD, $1 / 4 \times 1 / 8$ THK
WASHER, 5702-313-120
WASHER, SPLIT LOCK, 5/16 MED.

ITEM

50	1	$45-1725$
51	4	$45-1740$
52	10	$45-1800$
53	2	$45-2020$
54	1	$46-1705$
55	1	$48-0005$
56	1	$48-0019$
57	1	$48-0020$
58	2	$48-1750$
59	2	$51-0010$
60	1	$51-0012$
61	1	$51-6000$
62	1	$54-0010$
63	2	$54-0020$
64	4	$54-0030$
65	2	$54-0040$
66	2	$55-0010$
67	1	$57-9335$
68	1	$59-7222$
69	6	$63-1031$
70	1	$70-0050$
71	1	$75-15721$
72	1	$78-1996$

TITLE

WASHER, FLAT CUT 3/4"
WASHER, BLACK HARD 1/2"
WASHER, SPLIT LOCK 1/4" MED.
WASHER, NYLON
LOCK-NUT, ELASTIC, 3/4-10
PIN, DOWEL 3/16 x 3/8"
PIN, DOWEL $1 / 4 \times 5 / 8^{\prime \prime}$
PIN, DOWEL $1 / 4 \times 1$ "
PIN, DOWEL $1 / 2 \times 11 / 2^{\prime \prime}$
BEARING DEEP GROOVE
BEARING LOCK NUT, BH-06
BEARING LOCK NUT, NT-05
CAM FOLLOWER, TOOL CHANGER
BUSHING, GUIDE WHEEL
GUIDE WHEEL
STANDARD BUSHING, GD. WHEEL
SPRING WASHER, B2500-080
SHUTTLE COVER GASKET
GROMMET
CABLE CLAMP, 1/4"
PLT4S-M CABLE TIES
MOLEX BSNG. 2 PIN MALE
SPLIT FLEX TUBING 1/2" I.D.

ITEM

1	1	$20-0151$
2	1	$20-0152$
3	1	$20-9213$
4	1	$22-2629$
5	1	$24-9970 A$
6	1	$30-1219$
7	1	$30-1222$
8	6	$40-1715$
9	4	$51-0007$
10	2	$51-0008$

TITLE
MOTOR MOUNT40/50mm BS MACH.
BEARING HOUSING $40 / 50 \mathrm{~mm}$ BS MACH.
SPACER RING 40 mm BALL SCREW
KEY .1875/.1870 SQ.
40mm BS X-AXIS
COUPLING ASSEMBLY VF-7
BALL SCREW SUPPORT BEARING ASSEMBLY
SHCS, 5/16-18 X 1 1/2
BEARING DEEP GROOVE
BEARING LOCK NUT TCN-06-F

ITEM	QTY	DWG. NO.
1	1	$20-0151$
2	1	$20-0152$
3	1	$20-9213$
4	1	$22-2629$
5	1	$24-9960$ A
6	1	$30-1219$
7	1	$30-1222$
8	6	$40-1715$
9	4	$51-0007$
10	2	$51-0008$

TITLE

MOTOR MOUNT40/50mm BS MACH.
BEARING HOUSING $40 / 50 \mathrm{~mm}$ BS MACH.
SPACER RING 40mm BALL SCREW
KEY .1875/.1870 SQ.
X/Y/Z AXIS 40mm BS
COUPLING ASSEMBLY VF-7
BALL SCREW SUPPORT BEARING ASSEMBLY
SHCS, 5/16-18 X 1 1/2
BEARING DEEP GROOVE
BEARING LOCK NUT TCN-06-F


```
1 - 30-1200 - LEAD SCREW ASSEMBLY
2 - 30-7420 - BASE OIL LINE ASSEMBLY
3-32 - 5056 - LIMIT SWITCH ASSEMBLY
```

VF -8 BASE

VF -8 COLUMN


```
1 - 30-1240 - LEAD SCREW ASSEMBLY
2 - 30-7410 - SADDLE OIL LINE ASSEMBLY
3- 32-1406 - X AXIS MOTOR ASSEMBLY
4 - 32-2051 - TELEMECHANIQUE SWITCH ASSEMBLY
```


VF-8 SADDLE

ITEM	QTY	PART NO.
1	1	$20-0150$
2	1	$20-9215$
3	1	$20-9218$
4	1	$20-9800$
5	34	$22-7458$
6	1	$25-7267$
7	1	$25-9203$
8	1	$30-1212 A$
9	1	$30-7420 A$
10	1	$32-5056$
11	5	$40-0011$
12	2	$40-16413$
13	34	$40-1660$
14	6	$40-1712$
15	14	$40-1715$
16	6	$40-1750$
17	2	$40-1950$
18	20	$45-1600$
19	4	$50-9010$
20	1	$57-0075$
21	1	$57-0080$
22	4	$58-1560$
23	1	$58-3031$
24	34	$59-2033$
25	1	$62-0013$
26	.05	$99-4521$

TITLE
NUT HOUSING 40/50mm BS MACH
Y-AXIS BUMPER BRG END
Y-AXIS BUMPER MTR END
BASE, MACHINING
CAM, LINEAR GUIDE
Y-AXIS MOUNTING BRACKET
COVER PLATE MOTOR MOUNT
LEAD SCREW Y-AXIS
BASE OIL LINE ASSEMBLY
LIMIT SWITCH ASSEMBLY
MSHCS M10 X 25mm
MSHCS, M3 X 5
SHCS, $1 / 2-13 \times 11 / 2$
SHCS, $5 / 16-18 \times 11 / 4$
SHCS, 5/16-18 X 1 1/2
BHCS, 10-32 X 3/8
SHCS, $10-32 \times 3 / 4$
WASHER, LOCK
LINEAR GUIDE, X-AXIS VF-3
O-RING 2-021 BUNA
O-RING 2-023 BUNA
ADPT 1/8 M BSPT TO 5/16 F BANJO ELBOW 5/16 F X M6 M 1/2" CONDUIT STRAP SERVO MOTOR YASKAWA
ELECTRICAL GREASE

VF-10 BASE

ITEM

1
2
3
4
6
7
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

QTY

1
1
86
1

\qquad
1
1
14
2
4
86
6
6
6
14
4
1
1
4
1
1
.05

DWG. NO.

20-0150
20-0153
20-0154
20-0156
22-7458
25-7459
25-9219
25-9220
30-0036
30-0037
32-2051
40-16372
40-16413
40-16455
40-1660
40-1712
40-1750
45-1600
45-1681
48-0045
50-0001
57-0075
57-0080
58-1560
58-3031
59-2033
62-0013
99-4521

TITLE

NUT HOUSING 40/50 mm BS
SADDLE, VF-10 MACHINED
TABLE, VF-10 MACHINED
BUMPER, 1" 40 \& 50 mm LD SCREW
CAM, LINEAR GUIDE
TRIP BRACKET, TABLE
LIMIT SWITCH BRACKET X- AXIS
TRIP BRACKET X-AXIS
X-AXIS OIL LINE ASSEMBLY
BL LEADSCREW ASSEMBLY X AXIS
LIMIT SWITCH X HOME
SHCS, 3/8-16 X 1 1/2
MSHCS, M3 X 5
SHCS, 10-32 X . 88
SHCS, $1 / 2-13 \times 11 / 2$
SHCS, 5/16-18 X 1 1/4
BHCS, 10-32 X . 38
WASHER, LOCK
WASHER, SPLIT LOCK
PULL PIN 3/8 X 1 1/2
LINEAR GUIDE
O-RING 2-021 BUNA
O-RING 2-023 BUNA
ADPT 1/8 M BSPT TO 5/16 F
BANJO ELBOW 5/16 F X M6 M
1/2" CONDUIT STRAP
SERVO MOTOR YASKAWA
ELECTRICAL GREASE

$$
\text { OUT } \frac{\text { VIEW B }}{\text { OF POSITION }}
$$

$\frac{30-3292 \text { TOOL RELEASE PISTIN ASSEMBLY }}{1.20-7007 A}$
20-7007A - CLYLINDER HOUSING, TOOL RELEASE MECHANISM 20-7043A - PISTON, TOOL RELEASE
$20-7044 \mathrm{C}$ - SHAF, TOOL RELEASE 20-7044C - SHAFT, TOOL RELEASE 22-7045A - SPRING RETAIMER, 30 DEG. TOOL RELEASE 22-7246 - TOOL RELEASE BOLT 25-7050B - SWITCH MOUNTING BRACKET 32-2010 - TELEMECH, 24 IN CABLE ASSY 32-5620 - TRP SOLENOID VALVE ASSY 9. 57-0040- O'RING, \#2-11, SHAFT

$$
\begin{aligned}
& \text { SECTION A-A } \\
& \text { OUT OF POSITION } \\
& \hline
\end{aligned}
$$

[^2]

VF -SERIES SPINDLE 7.5K


```
1 - 32-1800 - SHUTTLE MOTOR ASSEMBLY
2 - 32-1900A - GENEVA DRIVER ASSEMBLY
3 - 32-2010 - TELEMECHANIQUE SWITCH ASSEMBLY
4 - 32-7011 - TOOL CHANGER CONDUIT ASSEMBLY
```

20 POCKET TOOL CHANGER

ITEM
1
2
3
4
5
6
7
8

QTY
1
1
32
64
64
32
32
32
32
1
8
64
64
64
64
32

PART_NO

20-9193
20-9324
22-7067F
22-9256
22-9574A
24-2010A
24-9257
25-7249
25-9328
25-9333
40-1500
40-16095
40-1697
40-1704
45-0045
48-0004

TITLE

CAROUSEL SUPPORT PLATE CAROUSEL, 32 TOOL
KEY, EXTRACTOR
BUSHING, EXTRACTOR
CT-EXTRACTOR
COMPRESSION SPRING
SPRING, EXTRACTOR
SLIDING PANEL
32 TOOL SLIDING PANEL COVER
NUMBER RING, 32 T/C
SHCS, 5/16-18 X $1^{\prime \prime}$
SHCS, $10-32 \times 1 / 4^{\prime \prime}$
SHCS, $1 / 4-20 \times 3 / 4^{\prime \prime}$
FHCS, 10-32 x 1/4"
WASHER, BLK HARD 1/4" x 1/8" THK.
SPRING PIN, 3/8" x 1"

32 TOOL CAROUSEL ASSEMBLY (CT)

ITEM
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16

QTY

1
1
32
64
64
32

32
32
1
8
64
64
64
64
32

PART_NO

20-9193
20-9324
22-7067F
22-7166A
22-9256
24-2010A
24-9257
25-7249
25-9328
25-9333
40-1500
40-16095
40-1697
40-1704
45-0045
48-0004

TITLE

CAROUSEL SUPPORT PLATE
CAROUSEL, 32 TOOL
KEY, EXTRACTOR
EXTRACTOR, BT-40 TOOL CHN
BUSHING, EXTRACTOR
COMPRESSION SPRING
SPRING, EXTRACTOR
SLIDING PANEL
32 TOOL SLIDING PANEL COVER
NUMBER RING, 32 T/C
SHCS, 5/16-18 X $1^{\prime \prime}$
SHCS, $10-32 \times 1 / 4^{\prime \prime}$
SHCS, $1 / 4-20 \times 3 / 4 "$
FHCS, $10-32 \times 1 / 4 "$
WASHER, BLK HARD $1 / 4^{\prime \prime} \times 1 / 8 "$ THK.
SPRING PIN, 3/8" x 1"

32 TOOL CAROUSEL ASSEMBLY (BT)

ITEM 1 2
3
4
5
6

7
8
9
10

QTY

1 40
20
40 20 1
5 40 40 40

DWG. NO.
20-9296
20-9297
20-9298
22-9256
24-9257
25-9349
40-16095
40-1631
40-1860
45-0045

DESCRIPTION
50 TAPER CAROUSEL - 20 TOOL
EXTRACTION FINGER 50 TAPER
ALIGNMENT KEY 50 TAPER
BUSHING, EXTRACTOR,
SPRING, EXTRACTOR, VF-ALL
20 TOOL NUMBER RING 50 T
SHCS, 10-32 X 1/4
SHCS, 1/4-20 X 3/8
SHCS, 1/4-20 X 7/8
WSHR, BLK HRD 1/4 X 1/8 THK

50 TAPER CAROUSEL ASSEMBLY (CT)

50 TAPER TOOL CHANGER ASSEMBLY

ITEM QTY

1 1 2 1 2 1 1 1 2
2
1

DWG. NO.
20-7035G
20-9283
20-9284
20-9288
20-9289
20-9290
20-9291
20-9292
20-9293
20-9295
20-9336
22-2065
22-7163
22-7255A
22-7263
22-9287
22-9344
25-7036
25-7162
25-9341
25-9342
25-9343
25-9345
30-0016
30-0017
30-0019
32-0011
32-2010
32-2030
32-7012B
40-1500
40-16091
40-1612
40-1614
40-1631
40-1632
40-16385
40-16391
40-1643
40-16435
40-1661
40-1669
40-1803
40-1830
40-1850
40-1970
40-2000
43-7000
44-1710
45-1620
45-1725
45-1740
45-1800
46-1705
48-0019
48-0020
48-1750
51-0002
51-0003
51-0010
51-0012
54-0010
59-9340
63-1031
70-0050
75-15721
78-1996

TITLE

VERTICAL AXLE
BEARING HOUSING, T/C HUB
SHUTTLE ROLLER STUD
SHUTTLE PLATE
SHUTTLE STOP BLOCK
SHUTTLE BASE PLATE
SHUTTLE VERTICAL PLATE
SHUTTLE HUB BLOCK
SHUTTLE GUSSET
V-TRACK, MACHINING
20 POCKET GENEVA STAR 2 PIN
LOCATING PIN
RIDER, TRAP DOOR
TOOL \#1 STAND OFF
SWITCH MOUNTING BLOCK
TOOL CHANGER MOUNTING ARM
TRIP BRACKET TOOL DOOR
CAP, TOOL CHANGER
CONNECTOR BRACKET
TOOL CHANGER COVER
SHUTTLE COVER
TOOL DOOR
holding arm cover plate
GENEVA DRIVER ASSY
50T CAROUSEL ASSY - CT
SLIP CLUTCH ASSY
SHUTTLE MOTOR ASSY
24" LIMIT SWITCH
TELEMECH 51 IN . Y-AXIS
MOLDED ATC CABLE ASSY
SHCS, $5 / 16-18 \times 1^{1 "}$
BHCS, $10-32 \times 1{ }^{1 "}$
FHCS, $1 / 4-20 \times 3 / 4 "$
SHCS, $1 / 4-20 \times 11 / 4$
SHCS, 1/4-20 X 3/8
SHCS, $1 / 4-20 \times 1 / 2^{\prime \prime}$
SHCS, $5 / 16-18 \times 3 / 4$
SHCS, $3 / 8-16 \times 1 / 2$
SHCS, $3 / 8-16 \times 2$ 1/2 BLKOX
SHCS, $3 / 8-16 \times 3$ " BLKOX
SHCS, 1/2-13 X $2^{\prime \prime}$
BHCS, $8-32 \times 3 / 8$
SHCS, $8-32 \times 11 / 4^{\prime \prime}$
HHB, $1 / 2-13 \times 13 / 4$
SHCS, $10-32 \times 3 / 8 "$
FHCS, $1 / 4-28 \times 1^{1 "}$
SHCS, $1 / 4-20 \times 5 / 8 "$
HHB, 5/16-18 x 1 3/4"
SSS, CUP PT 1/4-20 x 3/8"
LOCK WSHR, \#10
WASHER, FLT CUT 3/4"
WASHER, BLACH HARD 1/2"
WASHER, SPLIT LOCK 1/4" MED.
LOC-NUT, ELASTIC 3/4-10
PIN, DOWEL $1 / 4 \times 5 / 8^{\prime \prime}$
PIN, DOWEL $1 / 4 \times 1 "$
PIN, DOWEL $1 / 2 \times 11 / \mathbf{2 "}^{\prime \prime}$
VEE ROLLER W-4
ADJ ECCENTRIC MODEL BX-4
BEARING DEEP GROOVE
BEARING LOCK NUT, BH-06
CAM FOLLOWER, TOOL CHANGER
SPRING TOOL DOOR
CABLE CLAMP, 1/4"
PLT4S-M CABLE TIES
MOLEX BSNG. 2 PIN MALE
SPLIT FLEX TUBING 1/2" I.D.

P/N	DESCRIPTION	VF-0/1/2	VF-3/4	VF-6/8
30-3250A	Fluid Tank Assy, VF-0/1/2/6	1	-	2
$30-3251 \mathrm{~A}$	Fluid Tank Assy, VF-3/4	-	1	-
$30-3170 \mathrm{~A}$	Hydraulic Cylinder Assy, VF-0/1/2	1	-	-
$30-3970 \mathrm{~A}$	Hydraulic Cylinder Assy, VF-3/4	-	1	-
$30-3980 \mathrm{~A}$	Hydraulic Cylinder Assy, VF-6/8	-	-	2
$58-1730 \mathrm{~A}$	90" Hydraulic Hose	1	1	-
$58-1729 \mathrm{~A}$	138" Hydraulic Hose	-	-	2
$25-7560 \mathrm{~B}$	Hydraulic Fluid Tank Mount	1	-	2
$33-0771$	Hydraulic Pressure Sensor Cable, VF-0 thru 4	1	1	-
$33-6771$	Hydraulic Pressure Sensor Cable, VF-6/8	-	-	1
$59-4016$	Hydraulic Hose Clamp	1	1	equipped

[^0]: CAUTION! DO NOT PRY THE BEARING SLEEVE AWAY FROM THE HOUSING. DAMAGE

[^1]: NOTE: There are a number of limit switches located on the VMC, and some are difficult to reach. Ensure the problem is the switch before beginning removal procedures. The following is a list of all switches, their general location, and a functional description:

[^2]: 0.57-2155 - O'RING, 2-441 BUNA

 1. $58-2165$ - FITIING CLOSE NIPPLE $1 / 4$
 2. $58-2265$ - AIR MUFFLER, $3 / 8$ FLAT
 3. $58-3050-$ ELBOW, $1 / 4$ NYLON TUBING
 4. 58-3618-1/4 STREET ELBOW, 90 DEG
 5. 58-2670-1/4 NPT $M-1 / 8$ REDUCER
 6. 58-3685 - MALE $1 / 4$ NPT-3/8 TUEE-SWVL

 59-2760 - COMP. SPRING/LARGE WIRE
 . $59-2832 \mathrm{~A}$ - QUICK EXHAUST, TRP

